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Spin stabilization offers a straightforward and robust concept for spacecraft attitude control. The spin-axis

attitude determination is usually accomplished by means of sun- and Earth-sensor measurements. This paper

explores techniques for spin-axis attitude determination using only Earth-sensor data. An immediate attitude

determination can be achieved by straightforward geometrical arguments based on the extremes of the chord-angle

variations over the orbit. Furthermore, an effective least-squares approach is presented that employs a number of

equidistant chord-angle measurements collected during one orbital revolution. The adopted measurement model is

favorable for reducing the adverse effects of systematic errors. Finally, a few explicit approaches are offered for

reconstructing the most important biases. The application of these techniques is illustrated by means of actual

telemetry data from the METEOSAT second-generation satellite MSG-2.

I. Introduction

S PIN-STABILIZATION offers a straightforward, cost-effective,
and robust attitude stabilization concept for many mission

applications. A combination of sun and Earth sensors is normally the
most suitable means for performing the attitude determination (for
spin rates in the range from about 5 to over 100 rpm). Usually, the
measurements from both of these two sensors are employed in order
to have two independent reference directions for the attitude
determination algorithm.

There exists an extensive literature on the attitude determination of
spinning spacecraft as exemplified by the standard reference, Wertz
[1]. The spin-axis attitude determination is typically performed by
least-squares estimation techniques [2,3] using batches of sensor
measurement data. The accuracy of the resulting attitude solution
is influenced by random errors as well as biases and unmodeled
effects. The random-noise effects can be removed by using a suf-
ficiently large set of data. The influences of the biases, however,
cannot be eliminated completely in practice, and this represents
the fundamental limit for the achievable attitude determination accu-
racy [4,5].

This paper presents a few straightforward but very effective
approaches (which have not been presented in Wertz [1]) for spin-
axis attitude determination using Earth-sensor data only. Applicable
spacecraft have an Earth sensor with at least two infrared pencil
beams at different mounting angles. When these pencil beams have
simultaneous Earth coverage, the attitude knowledge can be
established from the variations in the corresponding chord angles
over the orbit. The main biases encountered in practice are errors in
the Earth’s infrared radiation profile, dynamical tilt and wobbling of
the spin axis, and sensor misalignments. These biases represent the

limiting factors for the attitude determination accuracy that can
be achieved. The method presented here eliminates at least parts of
these bias effects, namely those that act identically on the two
chord angles measured by the two pencil beams. Furthermore, a few
straightforward techniques are proposed for explicitly reconstructing
these biases.

The nonlinear character of the attitude measurement equations
presents many obstacles. The present paper offers attractive and
straightforward techniques for avoiding these difficulties. A judi-
cious choice of the measurement variable leads naturally to a least-
squares formulation. This so-called “kappa-method” has proven its
merits since 1978 in ESA’s series of METEOSATweather satellites
in geostationary orbit. We also present a straightforward ad hoc
method that produces an attitude solution from just the chord extrema
for a satellite in a geostationary orbit. Finally, the geometric equal-
chord method [4] is mentioned in the paper. This method may be
employed in any orbit (as long as the two chords intersect) but
requires additional information, like for instance a sun-aspect angle,
to establish a complete attitude solution. The use of these methods
has been illustrated by means of in-orbit sensor data from MSG-2
(METEOSAT second generation-2). The results show consistent
attitude solutions even in the presence of significant unmodeled
effects or biases.

II. Earth-Sensor Measurements

The Earth sensor has two static pencil beams oriented at angles
�i�i� 1; 2� from the body-fixed spin axis (Z axis) as shown in
Fig. 1 (for only one pencil beam). Strictly speaking, the dynamical
spin-axis attitude is a unit vector along the angular momentum
vector. We assume here that the angular momentum vector always
coincides exactly with the body-fixed Z axis, which is an axis
of either maximum or minimum inertia. Typical geostationary
spinning satellites have their spin axis pointing in a direction close
to the orbit normal (usually within 1 deg). When the pencil-beam
pointing directions are within 5 deg from the spacecraft equator,
both pencil beams can scan the favorable midlatitude regions of
the Earth simultaneously. For instance, the European METEOSAT
series of weather satellites use the values �1 � 86 deg and
�2 � 94 deg.

The fundamental pencil-beam measurements are the space/Earth
(S/E) and the Earth/space (E/S) pulses, which correspond to the
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crossing times of the Earth’s infrared rim. These times can be
converted into the half-chord angles �i�i� 1; 2� for the two pencil
beams by means of the spin rate. Knowledge of the spin rate can be
established from the sun or Earth-sensor measurements. In this paper
we assume that the spin rate remains constant over the interval
considered.

The angle � in Fig. 1 is the apparent Earth-radius angle seen from
geostationary altitude. From spherical geometry, we have (Wertz [1],
equations 11-7, 8)

cos�i cos�� sin�i sin� cos �i � cos � �i� 1; 2� (1)

where the Earth-aspect angle (also known as nadir angle) � is the
angle between the spin axis Z and the Earth vector E, which is the
spacecraft-to-Earth unit vector (see Fig. 1):

���� � arccosfZ � E���g (2)

The Earth vectorE��� � �r���=r��� varies with the orbital phase
angle � and points opposite to the orbital radius vector r���.

Equation (1) can be used in different ways, for instance:
1) It allows to solve directly for � when the half-chord-angle

measurements �i are inserted (but care must be taken to resolve the
sign ambiguity);

2) It is useful as the measurement equation for a batch-type
estimation of �.

For a general elliptical orbit, the apparent Earth-radius angle
� varies with the satellite’s orbital position r��� and the Earth’s
radius RE:

���� � arcsinfRE=r���g with r��� � ‘=f1� e cos�� � !�g
(3)

The orbital elements ‘, e, and ! denote the semilatus rectum, the
eccentricity, and the argument of perigee, respectively. The orbital
radius r��� is known from orbit determination. For a worst-case
knowledge error �r of 5 km, the error in � becomes
j��rj � ��r=r� tan � < 0:001 deg, which is negligible within the
context of attitude determination.

The radius RE in Eq. (3) is the Earth’s infrared radius observed
by the Earth sensor. The effective infrared radiation level at which
the Earth sensor is designed to trigger is typically 50% of the
observed peak radiance. The Earth’s mean infrared radiance profile
(in the CO2 spectral band) reaches to about 40 km above the Earth’s
surface (Wertz [1], pp. 90–97). The uncertainty in the triggering
altitude is hard to predict, but a value of 5 km is expected to be
conservative. Because the mean radius of the solid Earth is about
6367.5 km, it follows that the mean infrared Earth radius RE �
6407:5 km and �� 8:741 deg at the geostationary orbital radius of
42,164 km. In practice, each of the two pencil beams may
encounter different Earth radii because of a priori unknown
temporal and local variations in the Earth’s infrared profiles at the
locations where the pencil beams have their S/E and E/S crossings
(Fig. 1).

For geostationary satellites with pencil-beam settings within
5 deg from the spacecraft equator, the pencil-beam scan paths cross
the Earth’s rim in the midlatitude region. Obviously, the Earth
oblateness affects the crossing times measurements with errors of
the order of a few kilometers. The total Earth-sensor triggering error
(including radiation profile and oblateness effects) remains well

below 10 km and is negligible for geostationary satellites, that is,
j��j< 0:002 deg.

To illustrate the evolution of the measurements, we solve for �i
from Eq. (1):

�i��� � arccos

�
cos ���� � cos�i cos����

sin�i sin����

�
�i� 1; 2� (4)

Figure 2 shows the half-chord angles �i�i� 1; 2� generated by the
pencil-beams over a circular equatorial geostationary orbit. The
pencil-beam settings are taken as �1 � 86 deg and �2 � 94 deg,
and the spin-axis attitude used in the simulation has right
ascension and declination angles of �� 0 deg and �� 89:9 deg in
inertial geocentric coordinates. Figure 2 shows that the two chords
reach their alternating maximum and minimum values at the
orbital phase angles �� 0 and 180 deg. At the orbital positions
�� 90 and 270 deg, on the other hand, the two chords intersect.
At these times, the so-called equal-chord condition (i.e., �e�
�1 � �2) is satisfied.

III. Attitude and Orbit Interactions

Wenowaddress the geometrical relationships between the satellite
orbit and the spin-axis attitude. This involves the representation of
the attitude within the applicable reference frames (i.e., geocentric
inertial, orbital, and nodal). We make use of the fact that the orbit is
close to a perfect circular geostationary orbit with a small eccentricity
e of at most 0.002 and a small inclination i of up to 1 deg.

A. Attitude in Inertial Frame

The spin-axis attitude is represented by the unit vector Z. The
inertial components of the attitude Z can be expressed in terms of its
inertial right ascension � and declination �, Fig. 3:

Z � �cos� cos �; sin� cos �; sin ��T (5)

The orbital phase angle � is defined with reference to the line of
nodes. Therefore, the true anomaly (for an elliptical orbit) is �-!with
! the argument of perigee (not shown in Fig. 3). The general
transformation matrix between the local orbit coordinates (xorb, yorb,
zorb) and the inertial coordinates (Xi, Yi, Zi) in Fig. 3 is given by

xorb
yorb
zorb

0
@

1
A�

cos � cos� � sin � cos i sin� cos � sin�� sin � cos i cos� sin � sin i
� sin � cos� � cos � cos i sin� � sin � sin�� cos � cos i cos� cos � sin i

sin i sin� � sin i cos� cos i

2
4

3
5 Xi

Yi
Zi

0
@

1
A (6)

Fig. 1 Earth-sensor measurement principle.
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The unit vector norb points normal to the orbit plane and is parallel to
the zorb axis of the satellite local orbital reference frame (Fig. 3) with
inertial components:

n orb � �sin i sin�;� sin i cos�; cos i�T (7)

The inner product of Z and norb is given by:

Z � norb � cos i sin � � sin i cos � sin�� ��� (8)

The following special cases can be visualized with the help of
Fig. 3:

���� 90 deg) Z � norb � sin��	 i� (9a)

���;�� 180 deg) Z � norb � cos i sin � (9b)

For small inclination angleswe haveZ � norb � sin � regardless of the
right ascension value �.

The condition for the attitude vector to be pointing normal to the
orbit plane can be written as

Z � norb � cos i sin � � sin i cos � sin�� ��� � �1 (10)

This condition is satisfied when i� 0 and ���90 deg, which
corresponds to the ideal geostationary situation. For a near-equatorial
orbit with small inclination i and an attitude vector pointing close to
the (north) normal of the Earth’s equator with �� 90 deg�" (with
small positive "), we find

Z � norb � 1 � �i2 � "2�=2 � i" sin�� ��� (11)

with an error of third order in terms of the small parameters i and ".

Therefore, the depointing angle ’ between the attitude vector and the
orbit normal is bounded by

’� arccos�Z � norb� 
 i� " (12)

The Earth vectorE points opposite to the xorb axis, see Fig. 3. When
neglecting second and higher terms in the small angles i and ", we
obtain the following result for Z � E���:

Z � E��� � �" cos�� � ���� � i sin � (13)

This confirms that the vectors Z and E point essentially normal to
each other throughout the orbit.

B. Attitude in Orbit Frame

For the present geostationary application, it is most efficient to
express the attitude vector in components within the orbit frame
before executing the attitude determination procedure and to trans-
form the attitude vector back to inertial components afterward.
Therefore, we introduce the nodal reference frame (xn, yn, zn) with its
xn and yn axes within the orbit plane (Fig. 4). When the inclination
is small, the transformation to the inertial frame may be approxi-
mated by

xn
yn
zn

0
@

1
A�

cos� sin� 0

� sin� cos� i
i sin� �i cos� 1

2
4

3
5 Xi

Yi
Zi

0
@

1
A (14)

The components of the attitude vector relative to the nodal
reference frame are written in the form of Eq. (5), but the angles �o
and �o are now defined in the (xn, yn, zn) reference frame:

Zo � �cos�o cos �o; sin�o cos �o; sin �o�T (15)

It is straightforward to transform the components of Zo back to its
inertial representation Z by means of the inverse of the trans-
formation matrix of Eq. (14):

cos� cos �
sin� cos �

sin �

0
@

1
A

�
cos� � sin� i sin�
sin� cos� �i cos�
0 i 1

2
4

3
5 cos�o cos �o

sin�o cos �o
sin �o

0
@

1
A (16)

Therefore

tan�� tan��o ��� � i tan �o cos�o
cos2��o ��� (17a)

sin �� sin �o � i sin�o cos �o (17b)

Fig. 2 Simulated half-chord angles for geostationary spacecraft

(�� 0; �� 89:9deg).

Fig. 3 Orbit and attitude geometry in inertial (Xi, Yi, Zi) frame. Fig. 4 Attitude geometry in orbital nodal (xn, yn, zn) frame.
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When i� 0, Eqs. (17a) and (17b) reduce to �� �o �� and �� �o,
as expected.

The Earth-vector components within the (xn, yn, zn) reference
frame (Fig. 4) are given by

Eo��� � �r���=r��� � ��cos �; sin �; 0�T (18)

The inner product of Zo and Eo��� is thus

Zo � Eo��� � � cos�� � �o� cos �o (19)

This result is a straightforward periodic function of the orbital phase
angle � and is more attractive than Eq. (13) because it is exact and the
angles � and i are absent. Equation (19) indicates that the attitude
points normal to the Earth vector in the following circumstances:

Z o �Eo���� 0)
�
�o���=2 �any �� or:
�1;2� �o��=2 �any �o� (20)

In the first case, the attitude points normal to the orbit plane, whereas
the second case refers to an arbitrary attitude orientation where the
normality condition is fulfilled twice during each orbit.

The extremes of the Earth-aspect angle ���� � arccosfZo �
Eo���g over the orbit are given by

Zo � Eo��� � � cos �o ) �� �max � � � �o; at �max � �o
Zo � Eo��� � � cos �o ) �� �min � �o; at �min � �o � �

(21)

In the special case when �o � 90 deg, the attitude vector Zo points
normal to the orbit plane and is thus normal to the Earth vectorEo���
throughout the orbit, that is, ���� � 90 deg for all �. In fact, for most
geostationary applications, the attitude declination angle �o remains
very close to 90 deg. Therefore, the variations of ���� stay within
narrow bounds around 90 deg (for instance, in Fig. 2, the maximum
excursion is 0.1 deg).

C. Effect of Eccentricity

Most geostationary orbits have a small eccentricity of perhaps up
to e� 0:002. This means that the apparent Earth-radius angle ����
exhibits small oscillations ����� � ���� � �c over the orbit, and this
affects the resulting chord measurements. From Eq. (3) we have

sin ���� � �RE=‘��1� p cos �� q sin �� � sin�c � ����� cos �c
(22)

The parameters p� e cos! and q� e sin! are the components of
the eccentricity vector e along the nodal axes (xn, yn) of Fig. 4. The
angle�c � arcsin�RE=rc� � 8:741 deg represents the apparent Earth
infrared radius seen from geostationary altitude. The first-order
approximation (in terms of small eccentricity) of ����� follows from
Eq. (22):

����� � tan �c�p cos �� q sin �� (23)

Equation (23) indicates that the amplitude of the periodic variations
in the apparent Earth radius is j��j � e tan �c < 0:018 deg for
eccentricity values up to e� 0:002. The variation in the Earth radius
over the orbit affects the half-chord-angle measurements in Eq. (1)
through the term

cos ���� � cosf�c � �����g � cos �c � sin �c����� (24)

The effect of �� on the half-chord-angle measurement ��i�i� 1; 2�
can be established from the sensitivity relationship, which follows
from Eqs. (1) and (24)

��i �
@�i
@�
����� � sin �c�����=�sin �i sin�i sin�� (25)

Because both �i and � are close to 90 deg (for geostationary
applications) we can approximate j��ij � �sin �c= sin �i�j��j

<1:13 j��j � 0:02 deg. Because Earth-sensor calibration errors are
typically a few hundredths of a degree, we conclude that the effect of
orbit eccentricity on the chord measurements may be neglected (at
least for values of e up to about 0.002).

IV. Geometric Attitude Determination

A. General Measurement Model

When subtracting the cosines of the half-chord-angle measure-
ments �1 and �2 generated by the two pencil beams with mounting
angles �1 and �2, respectively, we find from Eq. (4):

y� cos �1 � cos �2 �
2 sin d�cos� cos �� cos d cos��

�cos2d � cos2�� sin�

� b cos �� a cos�
sin�

(26)

Whereas the angles �i�i� 1; 2�, �, and � are functions of the orbital
phase angle � (as discussed in the preceding sections), the parameters
�, d, a, and b are constants defined as

�� ��2 � �1�=2 (27a)

d� ��2 � �1�=2 (27b)

a� sin�2d�=�cos2d � cos2�� (27c)

b� 2 sind cos�=�cos2d � cos2�� (27d)

The (virtual) Earth-sensor angles � and d stand for the mean value
and half the difference, respectively, of the actual mounting angles�i
with i� 1, 2 (Fig. 1).

An explicit expression for the unknownEarth-aspect angle���� in
terms of the differences of the cosines of the half-chord angles can be
established by inversion of Eq. (26):

�1;2 � arccos

��
aB� y

�����������������������������
�y2 � a2 � B2

p �
=�y2 � a2�

�
(28)

with abbreviations y� cos �1 � cos �2 and B� b cos �. Equa-
tion (28) is valid for two Earth-sensor pencil-beam measurements in
anyEarth orbit. Caremust be taken that the proper sign is selected, for
instance by using a priori knowledge of the evolution of the Earth-
aspect angle �.

B. Specific Geostationary Application

Geostationary satellites usually have pencil-beam mounting
angles that are symmetric relative to the spacecraft equator, and so
their nominal mean value �� 90 deg. In this case, the constant
parameter a in Eq. (27c) becomes a� 2 tan d and the parameter b
in Eq. (27d) vanishes. For the sake of generality, and in order
to accommodate sensor misalignments and other biases, the term
containing b in Eq. (26) will be carried along in the subsequent
analysis.

Most geostationary satellites have their spin axis directed close to
the Zi axis of the inertial frame, which points normal to the Earth
equator. As long as the orbit inclination remains small, the spin axis
will be close to the orbit normal and the Earth-aspect angle ��
90 deg throughout the orbit. Therefore, it is useful to introduce the
small angle ��� � � �=2. Furthermore, the eccentricity effect will
be neglected so that ���� � �c. Equation (26) can now be expressed
as

y� cos �1 � cos �2 � �b cos �c � a sin ���= cos �� (29)

It is of interest to employ the series expansion of themain term tan ��
for small values of ��:
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tan���� � ��� 1

3
����3 � 2

15
����5 �Of����7g (30)

The ����5 term is below 1 arcs for �� angles up to 7.4 deg and is
obviously negligible. The ����3 term is less than 0.001 deg for ��
angles up to 2.1 deg and can also be neglected for practically all
applications. The magnitude of b is typically of the same order as
����2. When neglecting terms of the order of ����3, we can express
Eq. (29) as

y� cos �1 � cos �2 � b cos �c � a�� (31)

This measurement equation shows a linear relationship between the
measurement y and the attitude represented by the angle ��. The
parameters a and b depend only on the sensor mounting angles and
can be kept constant during the attitude estimation process. Themean
value of the measurements is the constant term b cos �, which
vanishes when �� 90 deg, see Eq. (27d).

C. Geometry of Chord Measurements

At specific points in the orbit it is possible to determine the Earth-
aspect angle (and sometimes the spin-axis attitude as well) from
purely geometrical considerations. Figure 5 shows the spin-axis
direction, which is pointing slightly away from the orbit normal by
the small angle ". At the orbital positions 1 and 2, the spin-axis
attitude points perpendicular to the instantaneous Earth vector.
Therefore, the Earth-aspect angle � equals 90 deg at these positions.

At the positions 3 and 4, on the other hand, the spin axis lies within
the plane defined by the instantaneous Earth vector and the orbit-
normal vector norb. It is evident that the Earth-aspect angle � reaches
its extreme excursions away from 90 deg at these two points.

The corresponding pencil-beam scan paths over the Earth are
sketched in Figs. 6a–6d. They show the two pencil-beam scans as
seen from the spacecraft for each of the four selected orbital
positions 1, 2, 3, and 4 in Fig. 5. Under ideal conditions, namely a
circular geostationary orbit, a perfectly spherical Earth, a constant
spin-axis attitude orientation pointing normal to the orbit plane, and
pencil beams that are mounted symmetrically to the spacecraft
equator, all scans shown in Figs. 6a–6dwould have identical lengths.
If the attitude is not normal to the orbit, however, the centerline of the
two pencil-beam scans makes an angle "� �=2 � �o with the
projection of the orbit plane on the Earth as shown in Figs. 6a–6d, see
also Eqs. (18–21).

It can be seen that themeasured chord angles at positions 1 and 2 of
Fig. 5 (corresponding to the Figs. 6a and 6b) are identical even when
" ≠ 0 so that the equal-chord condition is satisfied here. At
positions 3 and 4 of Fig. 5 (and also Figs. 6c and 6d), the scans are
displaced downward and upward relative to the centerline by an
extreme amount. These cases represent the minimum and maximum
measured chord angles over the orbit. In an ideal circular orbit, the
four positions shown in Fig. 5 would be separated by exactly 90 deg
(i.e., a quarter orbital period). For small eccentricity values (up to
e� 0:002) the lengths of these intervals may vary by at most 0.5 min
or 0.12 deg.

D. Equal-Chord Condition

The equal-chord method [4] uses half-chord-angle measurements
collected at the times when the chords produced by the two pencil
beams are identical as happens at positions 1 and 2 in Figs. 5, 6a, and
6b. The method produces an immediate geometrical solution for the
Earth-aspect angle �e � ��te� at the equal-chord time te.

When considering the case�� 90 deg, which implies that b� 0,
see Eq. (27d), we find from Eq. (26) that cot��e� must vanish at the
time te. Therefore, the Earth-aspect angle �e � ��te� must be equal
to 90 deg and Eq. (1) produces the results

sin�1 cos �e � sin�2 cos �e � cos �c (32a)

) �e � arccosfcos �c= cos dg (32b)Fig. 5 Attitude-orbit geometry at four orbital positions.

Fig. 6 Pencil-beam scan paths for the four positions of Fig. 5.
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This equal-chord solution is mathematically meaningful only if
the condition d 
 �c is satisfied. When this condition is violated,
the pencil beams are too wide apart to be able to cross the Earth’s
disk simultaneously and there simply cannot be an equal-chord
occurrence.

For a perfectly circular geostationary orbit, the apparent Earth
angle remains constant, that is, �c � 8:741 deg as calculated
following Eq. (22). Therefore, the equal-chord angle �e can be
predicted a priori (i.e., before any measurements have been
collected) based on the knowledge of the apparent Earth-radius
angle and the sensor mounting angles. For instance, in the case
when �� 90 deg and d� 4 deg, Eq. (32b) immediately produces
�e � 7:778 deg, which is consistent with the simulation results in
Fig. 2. If the measured equal-chord angle �e � ��te� would deviate
from the expected value, the residual would be useful for recon-
structing the bias in �c.

The equal-chord condition corresponds to the two orbital positions
�e � ��te�, that is, positions 1 and 2 in Fig. 5, where the attitude
vector is oriented precisely normal to the instantaneous Earth vector.
This implies that the right ascension�o of the attitude vector is 90 deg
ahead or behind the orbital position �e at the time te as can be seen
from the second line in Eq. (20) and Fig. 5. Thus, the equal-chord
positions allow the determination of the attitude right ascension angle
�o. The attitude declination angle �o, however, cannot be determined
from the equal-chord condition by itself. Additional information, for
instance the sun-aspect angle 	e � 	�te�, is required to be able to
establish a full attitude determination based on equal-chordmeasure-
ments alone.

E. Attitude from Chord Extremes

Figures 5 and 6 indicate that the extremes of the chord angles are
reached at the orbital positions 3 and 4. In fact, the Earth-aspect angle
���� also reaches its extreme value at these locations. Furthermore,
the attitude right ascension and declination angles �o and �o are
related to the extremes of the Earth-aspect angle as shown by
Eq. (21):

�o � � � �max; at �max � �o (33a)

�o � �min; at �min � �o � � (33b)

These results form the basis for a straightforward attitude
determination procedure that produces complete attitude knowledge
without requiring any further information.

The Earth-aspect angles�max and �min can be calculated from ymax

and ymin using the two half-chord-angle measurements �1 and �2 at
the positions �max and �min, see Eq. (31):

�max � �=2� ��max � �=2� ymax � b cos �c=a; at �max � �o
(34a)

�min � �=2� ��min � �=2� ymin � b cos �c=a
at �min � �o � � (34b)

We note that Eqs. (33a) and (33b) indicate that the sum of �max and
�min equals 180 deg, and, furthermore, ��max ����min. By adding
the two Eqs. (34a) and (34b) we obtain an interesting result that
allows the reconstruction of the parameter� from the extremes of the
chord measurements:

b� �ymax � ymin�=�2 cos �c� (35)

The average of the left- and right-hand sides of the twoEqs. (33a) and
(33b) produces an accurate determination of the angle �o because the
term b cos �c (including its biases) will be eliminated:

�o � �=2 � ��max � �min�=2� �=2 � �ymax � ymin�=�2a� (36)

where the expressions in Eqs. (34a) and (34b) have been used.

The angles �max � �o and �min � �o � � in Eqs. (33a) and (33b)
correspond to the positions 3 and 4 in Figs. 5 and 6, respectively.
The attitude angle �o can immediately be determined as the average
of these two orbital positions, that is the average of �max and
�min � 90 deg. The averaging is beneficial for reducing any biases
contributed, for instance, by eccentricity effects. However, it should
be noted that the right ascension angles constructed from the equal-
chord positions are in general more accurate as can be understood
from geometrical arguments (see Fig. 1 and 2).

Finally, the desired inertial attitude solution in terms of the angles
(�, �) can be obtained from the attitude angles �o and �o by means of
the transformation in Eqs. (16) and (17).

V. Batch Least-Squares Attitude Estimate

A. Measurement Equation

Equation (31) can be interpreted as the measurement equation
describing the functional relationship between the measurements
yj�j� 1; 2; . . . ; n� and the unknown state parameter ��. A batch of
measurements spread out over a full orbit revolution can be used to
determine the attitude associated with that orbit. An attitude esti-
mation procedure will now be formulated on the basis of an optimal
least-squares curve-fitting technique by using Eq. (31):

yj � cos �1��j� � cos �2��j� � a����j� � b cos �c �wj
�j� 1; 2; . . . ; n� (37)

where wj�j� 1; 2; . . . ; n� represents the random-noise contribu-
tions (with mean value assumed to be zero).

We recall the geometrical relationship between the Earth-aspect
angle ���j� and the spin-axis attitude in terms of the angles �o and �o
(relative to the nodal frame) in Eq. (19):

����j� � ���j� � �=2� arcsinfcos��j � �o� cos �og (38)

It is justified to linearize the arcsin term in Eq. (38) when �o is near
90 deg and ����j� is small (with error less than 0:001 deg for
�� < 2:7 deg). The first term on the right-hand side of Eq. (37) is

a����j� � a cos��j � �o� cos �o � c1 sin �j � c2 cos �j (39)

The coefficients ck��� 1; 2� are related to the attitude vector
components as follows:

c1 � a sin�o cos �o; c2 � a cos�o cos �o (40)

After the coefficients ck�k� 1; 2� have been determined, the attitude
angles (relative to the orbital plane) follow from

�o � arctanfc1=c2g; �o � arccosf
��������������������
�c21 � c22�

q
=ag (41)

This result may then be transformed into the inertial representation of
the attitude by using Eqs. (16) and (17).

B. Least-Squares Model

The least-squares fitting procedure [6] uses a linear relations-
hip between the observations and a set of independent basic func-
tions with constant coefficients that are expected to generate these
observations. Equations (37) and (39) suggest the following set of
functions:

h0��� � 1; h1��� � sin �; h2��� � cos � (42)

Equation (37) can be expressed in these functions as follows:

yj � y��j� �
X2
k�0

ckhk��j� � wj ) y �Hc� w (43)

The measurement and random-noise vectors are n dimensional, that
is, y � �y1; y2 . . . ; yn�T and w� �w1; w2 . . . ; wn�T , respectively.
The state vector that must be estimated consists of the three
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coefficients c� �c0; c1; c2�T with c1 and c2 representing the attitude
as shown in Eqs. (40) and (41).

The constant term represented by the coefficient c0 corresponds to
the parameter b cos �c of Eq. (37). Its estimate allows us to evaluate
the consistency of our assumed knowledge of the sensor mounting
angles (i.e., � and d) and the Earth-radius angle �c with the estimate
from the actual measurements. In geostationary applications, the
parameter b follows from the estimate of c0 when using the assumed
value of the Earth-radius angle �c. A deviation of the parameter b
from its expected value points to the presence of biases (details are
given in later sections).

The n � 3-dimensional measurement matrix H stands for

H�

1 sin �1 cos �1
1 sin �2 cos �2
� � � � � � � � �
1 sin �n cos �n

2
664

3
775 (44)

The optimal least-squares estimate of the vector c equals the
pseudoinverse solution, see, for instance, equation (1.26) of [6]:

ĉ� �HTH��1HTy (45)

All measurements have the sameweights because there is no obvious
a priori criterion for assigning different weights to the individual
measurements in the present application.

It is of interest to note that the matrix �HTH� and its inverse can be
calculated explicitly for a set of measurements that are sampled at
equal distances over the interval (0, 360 deg):

�HTH� �
Xn
j�1

1 sin �j cos �j
sin �j sin2�j sin �j cos �j
cos �j sin �j cos �j cos2�j

2
4

3
5

� n
1 0 0

0 0:5 0

0 0 0:5

2
4

3
5 (46a)

) �HTH��1 � 1

n

1 0 0

0 2 0

0 0 2

2
4

3
5 (46b)

The estimates of the coefficients c can thus be expressed explicitly in
terms of the measurements

ĉ� �HTH��1HTy � 1

n

Xn
j�1

yj
2yj sin �j
2yj cos �j

0
@

1
A (47)

For instance, if we collect four equidistant (i.e., separated by 90 deg)
measurement samples yj�j� 1; . . . ; 4� over an orbital revolution,we
obtain the plausible result

ĉ�
ĉ0
ĉ1
ĉ2

0
@

1
A� 1

4

�y1 � y2 � y3 � y4�
2�y2 � y4�
2�y1 � y3�

0
@

1
A (48)

In general, the error covariancematrix of the estimate ĉ can readily be
calculated from Eq. (45) using the explicit result for �HTH��1 in
Eq. (46b). It can be shown that the errors of the components in
Eq. (48) are uncorrelated and we have


20 � Ef��c0�2g � 
2y=n; 
2j � Ef��cj�2g � 2
2y=n

�j� 1; 2� (49)

As expected, the estimation error decreases with the inverse square
root of the n measurements.

VI. Error Analyses

A. Half-Chord-Angle Error

The fundamental pencil-beam measurements consist of the S/E
and E/S crossing times of the Earth’s infrared horizon (Fig. 1). These
times can be transformed to the half-chord angles �i for each of the
two pencil-beams:

�i � !spin�ti;E=S � ti;S=E�=2 �i� 1; 2� (50)

where!spin denotes the spin rate, which is assumed to be constant and
perfectly known. In an estimation process, the two crossing times in
Eq. (50) may be treated as independent random variables. It is cus-
tomary to assume that the randommeasurement errors in the crossing
times are distributed in accordance with a Gaussian probability
density function (PDF). In the absence of biases, the expected values
of the measurements will correspond to the true crossing times. We
assume that the standard deviations of all crossing times have the
same value 
t. It can be seen that the induced random variable � (the
index i is dropped now for convenience) in Eq. (50) is also Gaussian
with expected value ��� !spin��tE=S � �tS=E� and standard deviation


� � 1=2
���
2
p
!spin
t.

The PDF of the random variable x� cos � can be obtained
through a transformation from the PDF of the Gaussian variable �
but the PDF of x is definitely not a Gaussian distribution. We sep-
arate � in its true value �true plus a Gaussian variable �� with
zero expectation. The measurement � satisfies cos �� cos �true �
sin �true�� with ��� �true for scan paths far away from the
Earth’s limb. This approach can be used to establish the statistical
properties of the random-noise term w on the right-hand side of
our measurement Eq. (43).

Finally, we note that the model presented here also serves to
include small nutation effects because they affect themeasured chord
angles in much the same way as the random noise.

B. Error in Observation y

We consider the propagation of arbitrary errors��i, i� 1, 2, with
expected valuesEf��ig � 0, into the observation vector y defined in
Eq. (37). The error �y follows from the half-chord-angle errors
��i�i� 1; 2�:

�y� �� sin �1; sin �2�
��1
��2

� �
(51)

The covariance of y can be calculated as


2y �Ef��y�2g

� �� sin�1; sin�2�
Ef���1�2g Ef��1��2g
Ef��1��2g Ef���2�2g

� �
� sin�1
sin�2

� �

(52)

Wemake a few reasonable assumptions about the nature of the chord-
angle errors, namely that themeasurement errors of each of the pencil
beams have the same covariances 
2� � Ef���1�2g � Ef���2�2g
and are independent, Ef��1��2g � 0. Equation (52) can now be
simplified as


2y � 
2��sin2�1 � sin2�2� � 2
2�sin
2 ~� (53)

where ~� is a representative value for both �i, i� 1, 2. This
approximation is justified because thevariations in the two chords are
typically only a fraction of a degree. When taking ~�� 7:78 deg (see
Fig. 2), we find the approximate result


y �
���
2
p

� sin ~�� 0:191
� (54)

It is of interest to note that the expected error in the variable y is
considerably smaller than the chord measurement errors themselves.
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C. Attitude Error

The expected error in the attitude estimate can be established by
recognizing that the coefficients c1 and c2 are proportional to the
components of the spin-axis attitude vector along the nodal axes in
the orbit plane. The comparison of Eqs. (15) and (40) shows
immediately that c1 � aZo;y and c2 � aZo;x. The variance of the
projected component of the attitude vector within the orbit plane can
be calculated from the results in Eq. (49):

j�Zoj �
������������������������������������������
��Zo;x�2 � ��Zo;y�2

q
�

����������������������������������������
f��c1�2 � ��c2�2g

p
=a

) 
att �
���������������������
f
21 � 
22g

q
=a� 2
y=�a

���
n
p
� (55)

The nominal sensor values assumed here lead to a� 0:140. With the
help of Eq. (54), we can express the attitude error in the half-chord
error 
�:


att � 2:72 
�=
���
n
p

(56)

Typical random errors in the half-chord-angle measurements may be
of the order of 
� � 0:025 deg. When taking a set of 90 equidistant
measurements per orbit, we find the expected attitude error when
only random-noise effects are considered:


att � 2:73 
�=
������
90
p

� 0:007 deg (57)

This result confirms that the effect of the random errors will be
reduced to insignificance when using a batch of 90 measurements
collected at a 4 deg sampling interval over one orbit.

VII. Reconstruction of Biases

A. Sensor Pointing Biases

The sensor angles �i are measured accurately relative to the
satellite’s geometricZ axis before launch. After launch, the moments
of inertia and the dynamical spin axis usually vary over time mainly
because of the depletion of the onboard propellant. The tilt in the
dynamical spin axis relative to the body Z axis directly affects the
effective sensor orientation angle �. Errors in the separation angle d
between the two pencil beams, on the other hand, are due to relatively
minor sensor-internal misalignments. Usually, the bias in d is insig-
nificant when compared with biases in the angle� and in the Earth’s
infrared horizon.

Small individual biases�� and�d with respect to their nominal
design values (for instance,�� 90 deg and d� 4 deg, respectively)
affect the observation y� cos �1 � cos �2 through the auxiliary
mounting parameters a and b defined in Eqs. (27c) and (27d). The
sensitivity relationship can be established from Eq. (31):

�y� �����a� �cos �c��b (58)

The errors �a and �b follow from the biases �� and �d:

�a� �@a=@����� �@a=@d��d (59a)

�b� �@b=@����� �@b=@d��d (59b)

When assuming �� 90 deg and d� 4 deg we can calculate the
partial derivatives:

@a=@�� 2 sin d sin�2��=�cos3d� � 0 (60a)

@b=@���2 sin d sin�=�cos2d� � �2d (60b)

@a=@d� 2=�cos2d� � 2 (60c)

@b=@d� 2 cos��1� sin2d�=�cos3d� � 0 (60d)

Finally, the sensitivity of ywith respect to sensor biases follows from
Eq. (58):

�y� 2�����d � 2�d cos �c��� (61)

In practice, �y can be interpreted as the “measurement residual,”
which is defined as the mean value (over some orbital arc) of the

differences between the estimated observations y
_

j (which can be
generated from the available attitude estimate) and the actual
measurements yj, j� 1; 2; . . . ; n.

At the beginning of this section it was mentioned that the bias��
is typically more significant than the bias �d. Furthermore, the
coefficient of��, that is, the term d cos �c, in Eq. (61) is larger than
the coefficient �� of �d. Therefore, Eq. (61) provides a
straightforward and useful procedure for reconstructing the bias
�� from the observed residual �y:

�����y=�2d cos �c� � �7:25�y (62)

This result illustrates that the sensitivity for reconstructing the bias
�� from the observed residual �y is extremely favorable.

B. Earth-Radius Bias

Equations (1) and (4) indicate that a bias in the Earth’s infrared
radius affects the chord measurements. The expected value of the
infrared Earth radius is approximately 40 km above the Earth’s solid
disk (Wertz [1] p. 97). However, in practice, there are appreciable
local (as well as temporal) variations about the nominal infrared
radius. In particular, there is a north–south gradient due to seasonal
influences, which can lead to significant errors in the measured half-
chord angles of up to 0.3 deg [7].

In the casewhen the errors in the infrared radius are approximately
uniform over the Earth’s disk, the present model in terms of y�
cos �1 � cos �2 is very attractive. Equation (31) shows that the
variation of y under a constant change in Earth radius is given by
�y���b sin �c���. Because �� 90 deg for geostationary
applications, we find b� 0 and �y� 0. Thus, the uniform biases
in the Earth radii essentially vanish in the calculation of y. However,
the nonuniform parts of the Earth’s infrared radiation do not cancel
and represent a significant error source for the attitude determina-
tion [7].

The equal-chord angle is useful for reconstructing the uniformbias
in the apparent Earth-radius angle. Although the infrared biases vary
locally, the equal-chord conditions occur at favorable midlatitude
locations (see Figs. 6a and 6b) and may be representative for the
uniform bias. The predicted half-chord-angle measurement at the
equal-chord time is given by Eq. (32b):

�e;pred � arccosfcos �c= cos dg (63)

The residual��e between the measured equal-chord angle �e and its
predicted value �e;pred is most likely caused by an offset in the
apparent Earth-radius angle �c at the equal-chord time te. From
Eq. (63) we find

��e � fcos d sin �e= sin�cg��e � 0:888��e (64)

This result gives a straightforward but useful approach for recon-
structing the Earth-radius bias from the observed residual of themea-
sured equal-chord angle �e at time te. It may be noted that a residual
of 0.05 deg in the half-chord angle would correspond to an offset of
about 32 km in Earth radius in the present application.

VIII. Application to MSG-2 Data

The techniques proposed previously have been illustrated by using
actual in-orbit Earth-sensor data produced by MSG-2, which is the
second operational flight in the series of METEOSAT second
generation weather satellites.
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A. Background

MSG-2 was injected into a geostationary transfer orbit by an
Ariane 5 launcher on 21 December 2005. The initial operations [8]
were conducted by ESA/European SpaceOperations Centre (ESOC)
in Darmstadt, Germany and lasted until 2 January 2006, whenMSG-
2 achieved its geostationary operational phase and was handed over
to the European Organisation for the Exploitation of Meteorological
Satellites, known as EUMETSAT, also in Darmstadt, Germany.

The sensor data used in the present study cover a 24-h interval near
the end of the near-geostationary drift phase, between 1800 h on
29 December and 1800 h on 30 December 2005. December 29
started out with an apogee-loweringmaneuver and the releases of the
baffle and cooler cover, followed by a collision avoidance maneuver
[9]. Subsequently, the final spin up was performed in two parts, first
to 90 rpm and finally to 99.782 rpm. Between about 900 and 1300 h,
the propellant lines were decontaminated by heating. This lead to
migration of propellant between the tanks and induced a persistent
“wobbling motion,”which affected the sensor data over the next few
days. Finally, at 1400 h, the commissioning tests of the imager’s scan
mirror were performed.

At the start of the data interval, the spin-axis attitude was at an
angle of about 3.5 deg from the orbit normal. This angle is consid-
erably larger than during the operational geostationary phase.
Therefore, the data offer adverse conditions for the methods pre-
sented in this paper, which are based on a close alignment between
the attitude vector and the orbit-normal direction. The orbit
eccentricity of 1:3 � 10�3 leads to altitude variations of about 55 km
with corresponding variations in the apparent Earth-radius angle of
about 0.012 deg. Furthermore, this eccentricity may cause measure-
ments that are equidistant in time to be displaced by up to 0.08 deg in
orbital position.

Throughout the interval considered here, the satellite attitude was
in a free-drift mode without any control actuations. The dominant
disturbing torque acting on the satellite is due to solar radiation
pressure effects. Its cumulative effect over a one-day period can be
considered negligible when considering a satellite spinning at about
100 rpm [10]. Therefore, the angularmomentumvectormay be taken
constant.

B. Results of Least-Squares Method

Table 1 provides the results of the batch least-squares technique.
The first column gives the number of measurement points, equidis-
tant in time over an orbital revolution. Therefore, the intervals
between the successive data points range from 72 deg (i.e., 4.8 h) in
the first row to 0.36 deg (i.e., 8.6 s) in the final row. We did not
perform any preprocessing of the data, for instance, by averaging the
individual measurements, which arrive every 0.66 s, before applying
the least-squares method.

The second column gives the angular deviation of the resulting
least-squares attitude relative to the reference attitude used by ESOC
(i.e., �� 83:265 deg, �� 86:492 deg, see [9] p. 66).

The third column provides the estimate of the coefficient c0, which
represents the average of the function y��� over the orbit and is a
useful parameter for the bias analyses. The next column provides the
mounting parameter b� c0= cos �c, which follows directly from the

c0 estimate. The final column gives the reconstructed bias mounting
angle �� that reconciles [in accordance with Eq. (62)] the
differences between the observed values of the parameters c0 and b
with their assumed baseline values.

The results of the second column of Table 1 show that, initially at
least, the results of the least-squares estimation technique approach
the ESOC reference attitude for an increasing number of measure-
ments. However, in the lower part of Table 1 when over 100 data
points are used, there is apparently no further convergence. The lack
of further convergence towards the ESOC attitude may be surprising
at first sight. However, it must be kept in mind that the actual attitude
is unknown and that the ESOC attitude, which is used for compar-
isons sake, differs also from the real attitude. The outlier results
for the 600 and 1000 points in Table 1 indicate the presence of

Table 1 Summary of least-squares results and consequences

Number of data points Attitude difference, deg c0, average value of y��� b, mounting parameter ��, mounting bias, deg

5 0.333 �4:36 � 10�4 �4:41 � 10�4 0.231
10 0.295 �4:29 � 10�4 �4:35 � 10�4 0.229
20 0.237 �3:76 � 10�4 �3:80 � 10�4 0.206
30 0.241 �3:04 � 10�4 �3:08 � 10�4 0.177
60 0.185 �3:31 � 10�4 �3:35 � 10�4 0.188
100 0.086 �3:60 � 10�4 �3:64 � 10�4 0.200
200 0.119 �3:57 � 10�4 �3:61 � 10�4 0.199
400 0.104 �3:54 � 10�4 �3:58 � 10�4 0.198
600 0.204 �3:61 � 10�4 �3:65 � 10�4 0.200
800 0.097 �3:52 � 10�4 �3:57 � 10�4 0.197
1000 0.256 �3:65 � 10�4 �3:70 � 10�4 0.202

Fig. 7 Measured and predicted half-chord angles before and after

correction.
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unmodeled bias effects like the Earth’s infrared radius and the spin-
axis wobbling motion.

In any case, the results for the c0 estimate and the associated
reconstructed b and �� parameters in Table 1 remain very stable
after about 30 data points.

The result of�� in Table 1 points to the presence of a bias in the
sensor mounting angle. The value of this bias will be taken as
��� 0:18 deg so that we have�� 90:13 deg instead of its nominal
value of �� 89:95 deg. The value of 0.18 deg is preferred over the
result from Table 1 ( i.e., � 0:20 deg) because it produces more
uniform residuals and a better symmetry between the residuals near
the extremes of the chords. In fact, the reconstructed�� bias is more
likely due to a dynamical tilt in the spin axis, caused by asymmetrical
propellant loading in the tanks, rather than an actual offset in the
sensor mounting angle. Furthermore, it should be noted that the
selected �� bias will likely also contains significant contributions
from other unmodeled effects, in particular those induced by
variations in the Earth’s infrared radius, which is expected to be the
predominant bias in the present application.

C. Reconstruction of Biases from Residuals

Figures 7 and 8 show the residuals in the half-chordmeasurements
and in the function y���, respectively. Figures 7a and 8a are based on
the a priori sensor mounting angles, whereas Figs. 7b and 8b use
mounting angles that have been corrected for the reconstructed ��
bias as discussed previously.

Figures 9a and 9b provide close-ups of the observed residuals in
Figs. 7b and 8b. Variations of up to almost 0.2 deg in the half-chord-

length angles are visible now. These residuals are believed to be
largely due to local variations in the Earth’s infrared radius. It is
known [8] that the Earth radiance may vary strongly as a function
of the Earth-aspect angle. Also, systematic offsets in the sensor
mounting angles and, more likely, dynamical imbalance of the spin
axis, contribute to these residuals. The higher frequency wobbling of
the spin axis mentioned previously can also be observed in the
residuals (see also [9], pp. 60–61). Unfortunately, the residuals yield
little quantitative information on the relative contributions of the
various biases.

The ad hoc approaches for estimating the attitude and for
reconstructing some of the biases that are proposed at various stages
in this paper produce useful results in general. For instance, the
determination of the attitude declination from the extremes in the
chords in Eq. (36) is only 0.08 deg away from the ESOC attitude
result. The determination of the attitude right ascension from the two
equal-chord locations produces two results that are essentially equal
and about 0.15 deg away from the ESOC reference attitude. Because
the different attitude solutions are within 0.1 deg of each other, it is
likely that the actual (unknown) attitude error may be of a similar
small order of magnitude.

The reconstruction of the uniform Earth-radius bias from the two
equal-chord measurements in the orbit [Eq. (64)] with average value
��c � 0:042 produces ��c � 0:038 deg. This corresponds to an
offset in the Earth horizon of about 24 km. The value of �� can be
seen to be consistent with the residuals in the neighborhood of the
two equal-chord points in Fig. 9a.

Finally, the reconstruction of the parameter b from the measured
extremes in the function y��� by means of Eq. (35) produces

Fig. 8 Measured and predicted function y��� before and after

correction. Fig. 9 Observed residuals in half-chord angles and in function y���.
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b��2:6 � 10�4, which is different from themore credible averaged
result b��3:7 � 10�4 found in Table 1. It is reassuring that the
discrepancy of 1:1 � 10�4 may be attributed to the asymmetry in the
residuals of the function y��� near the chord extremes at �� 165 and
345 deg in Fig. 9b.

IX. Conclusions

The paper presents an outline of the principles and the imple-
mentation aspects of a few straightforward techniques for spin-axis
attitude determination based on the orbital variations in the half-
chord-angle measurements produced by the Earth-sensor pencil
beams. The spin-axis attitude can be established directly from the
observed magnitudes and phases of the extremes in the chord-angle
variations over the orbit. Furthermore, an effective least-squares
approach is presented that employs a number of equidistant chord-
angle measurements over the orbit. These methods do not require
any a priori attitude knowledge or any additional measurements
from a different sensor. We also present results for the sensitivity of
the attitude solution to the most relevant biases affecting the chord-
angle measurements and a few approaches for the reconstruction of
these biases. The application of the techniques has been illustrated
by using actual sensor data from the geostationary MSG-2 weather
satellite. The results demonstrate that the proposed methods offer
straightforward, effective, and attractive alternatives to the tradi-
tional attitude estimation methods.
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