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a b s t r a c t

This paper considers a spinning rigid body and a particle with internal motion under

axial thrust. This model is helpful for gaining insights into the nutation anomalies that

occurred near the end of orbit injections performed by STAR-48 rocket motors. The

stability of this system is investigated by means of linearized equations about a uniform

spin reference state. In this model, a double root does not necessarily imply instability.

The resulting stability condition defines a manifold in the parameter space. A detailed

study of this manifold and the parameter space shows that the envelope of the constant

solutions is in fact the stability boundary. Only part of the manifold defines a physical

system and the range of frequency values that make the system unstable is restricted.

Also it turns out that an increase of the spring stiffness, which restrains the internal

motion, does not necessarily increase the stability margin. The application of the model

is demonstrated using the orbit injection data of ESA’s Ulysses satellite in 1990.

& 2012 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

After decades of successful upper stage firings using
spinning solid rocket motors, the fast growth rates of the
nutation angle that occurred toward the end of STAR-48
burns, came as a total surprise. Flandro et al. [1] provides
a list of twelve PAM-D1 orbit injections, of which nine
showed an excessive nutation angle at the end of the
burn. The STAR-48 was the engine commonly used in the
1980s as integrated in the Perigee Assist Motor module
(PAM). A novel feature of the STAR-48 was that, in an
attempt to shorten the engine length, the nozzle was
made partially re-entrant in the combustion chamber.

This design change introduced somehow, depending on
the PAM/spacecraft configuration, an instability mechan-
ism at the end of the burn.

This attitude instability inspired many investigations,
see Refs. [1–18]. Eventually, it became clear that only two
research directions were promising. The first pointed to
instability of the gas dynamics within the combustion
chamber due to the fact that the new complex shape of
the burning surface changed the gas flow significantly.
The second mechanism is known as the ‘slag model’.
It studies the internal motion of the combustion products
(i.e., Al2O3 particles) that may accumulate as liquid slag
within the collar of the STAR-48 re-entrant nozzle.
A prospective explanation must involve a sufficiently
large transverse torque to overcome the jet damping
effect (see Ref. [19]) near the end of the burn. Gradually,
a preference for the slag model mechanism emerged as
the main cause of instability with a possible contribution
of the internal gas flow.

A full description of the nutation problem should start
from a set of non-linear time-varying equations coupled
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to the three-dimensional gas flow equations but its com-
plexity would be overwhelming. A practical approach is to
study somewhat restricted models that may explain some
aspects of the observed instability. As a first step, it should
be verified that a misaligned thrust or a realistic time-
varying thrust profile cannot cause the instability. This
issue is studied in Ref. [2].

Refs. [1,3,4] provide examples of gas dynamic studies.
Flandro et al. [1] summarize the effects of an un-steady
vortex flow by transverse torque components that are
proportional to the transverse rates. His full model may
indeed generate instability but is very sensitive to the
system parameters and initial conditions. Meyer [3] starts
by expanding classical flow results to include the entering
(combustion front) and exit of the gases through the
nozzle. Misterek et al. [4] perform numerical simulations
on two two-dimensional steady-flow problems but obtains
only stabilizing torques.

Janssens [5] uses Flandro’s summarizing model [1] in a
time-varying version. The expressions for the nutation
frequency and jet damping take account of the variations
of the mass and moments of inertia during the burn. The
results give a higher nutation frequency and a reduced jet
damping torque which agrees with the flight data. How-
ever, in order to overcome the jet damping, the instability
needs to start at the beginning of the burn, which is not
compatible with the flight data. Meyer [6] performs
different gas dynamic studies and concludes that the gas
dynamics effects may only provide a minor contribution
to the observed instability. Unfortunately, none of the
global investigations is capable of establishing good
agreements with all available flight data.

The liquid-slag hypothesis has been proposed by
Mingori, Or, et al. (see Refs. [7–11]). The main objective
was to acquire better insights into the instability mechan-
ism by studying the linearized equations that include the
thrust and internal particle motion. These models use
the constant mass properties at the end of the burn. For
the internal particle motion several models have been
proposed. In this paper the model of Refs. [7–9] is used
where the particle may move in a plane perpendicular to
the spin axis to which it is attached by a spring. This
model indeed produces a coning instability due to the
coupling of the nutation with a particle located aft of the
system center of mass.

Other internal-motion models that may produce
instability are a spherical pendulum or two pendulums
in a meridian plane (see Refs. [10,11]). Cochran and Kang
[12–14] simulate the non-linear dynamics of a body
augmented with a spherical pendulum and show that
parametric resonances are possible. However, Refs. [12–14]
do not present compelling evidence that such resonances
are compatible with the observed nutation instability. When
modeling the internal motion by a pendulum, we only need
its length and mass for which a range of realistic values is
available. The instability should occur within this range of
parameters which is in fact not the case in Ref. [10].

The physical meaning of the restoring force that
counteracts the centrifugal force in the elastic spring
model is not at all clear. Here, we interpret the spring
stiffness as a ‘tuning’ parameter for matching the flight

data. The introduction of a spring may be avoided by
using the constraint force to keep the liquid slag in
contact with either the nozzle collar or the combustion
chamber wall depending on the spin-to-thrust ratio, see
Meyer [6].

At the time in the 1980s when the nutation instabilities
occurred, little was known about the amount of slag that may
accumulate during a solid rocket burn of about 85 s. In fact,
at the time of the Ulysses launch in 1990, the estimates for
the STAR-48 varied from 10 kg to over 100 kg. As expected,
also this topic generated lots of research (see, for instance,
Ref. [15]). In 2000, Ref. [16] provides a list of 53 research
papers on the most likely values of the slag masses. The
current estimates start at 4 kg whereas Or and Challoner [11]
use 9 and 27 kg in their work.

In a pioneering paper, Mingori and Yam [7] obtain a
stability condition for their model in terms of two non-
dimensional parameters, i.e. b2 and T0, which comprise all
of the eight physical parameters of their model. This
stability condition describes a manifold in the eight-
dimensional parameter space. In this paper we clarify
and interpret the meaning of this stability boundary in
terms of the parameters (i.e., mass and spring stiffness)
that define the particle’s internal motion.

The next section introduces the nomenclature of the
parameter space. The dependencies of the derived para-
meters on the particle and spring (which cause the
instability) are separated, as far as possible, from the
remaining six physical parameters. Subsequently, we
rewrite the equations of motion from Ref. [7] in terms
of the independent parameters of the body and particle
components and not in the system parameters. Next, we
treat two special cases, i.e. zero stiffness and the particle
at the body Center of Mass (CoM), to obtain better
insights in the dynamics. The results illustrate the com-
plex relationship between the stability boundary and the
physical parameters.

Subsequently, we establish the condition for the existence
of constant (or stationary) solutions. This generates a family
of linear equations T0(b2). A new insight is that the envelope
of these lines with respect to the inertia ratio produces the
stability boundary. Afterwards, we derive the stability bound-
ary by using complex variables and clarify the physical
meaning of this transformation. We find the stability condi-
tion as an implicit function of the same two non-dimensional
parameters {b2, T0} as in Ref. [7] and not as a set of coupled
equations. Next, we express the stability boundary in terms
of the normalized particle mass and spring stiffness. The
result shows that only part of the stability condition, as
expressed in b2 and T0, corresponds to a physical system.
Finally, we derive boundaries for the values of the double
root on the stability boundary.

2. Model data and nomenclature

2.1. Physical model

Fig. 1 shows the physical model studied here which is
identical to the one used in Refs. [7,8]. It consists of a
symmetric rigid body of constant mass M and principal
moments of inertia C (axial) and Ab (transverse). The body
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includes the mass properties of the spacecraft, the STAR-
48 solid motor casing, and remaining PAM hardware at
the end of the burn. It spins at constant spin rate O and is
subjected to a thrust F which is assumed to be perfectly
pointing along the spin axis.

The particle of mass m is introduced to generate a
potential instability mechanism through internal motion.
It represents the accumulated slag or a feature of the gas
flow of a motor with a re-entrant nozzle. The particle is
nominally located on the spin axis at distance l from the
body center of mass. For l40, the particle is on the þz

axis and for lo0 it is on the �z axis. The particle may
move in an equatorial plane while attached to the spin
axis by a linear spring of stiffness k.

The point of application of the thrust is also taken at the
distance l from the center of mass even though it is usually
taken within the nozzle exit plane. This assumption is
acceptable for a motor with a re-entrant nozzle and avoids
the introduction of yet another independent parameter.

Table 1 summarizes the eight independent parameters
of our model. For a given spacecraft/PAM configuration,
all of the inputs M, C, Ab, F, and l are essentially frozen.
The final two parameters m and k will play a different role

in the discussion of the results. Ref. [10] gives a similar list
for the case when the internal motion is modeled by a
spherical pendulum. (The pendulum attachment distance
and the pendulum length are the parameters replacing k

and m).

2.2. Derived and auxiliary parameters

Table 2 summarizes the derived and auxiliary para-
meters. The first three rows provide the system para-
meters. The total mass of the system is M þm and the
associated mass ratio is m. The presence of the slag mass
m changes the lever arm of the particle to the system
CoMs from l to h.

Although the difference between h and l is small when
m5M, we prefer to use l since it is independent of m. The
spin inertia C remains unchanged when the particle is on
the spin axis but changes by the amount mr2 when the
particle is at a distance r from the spin axis. This second-
order term drops out when the equations are being
linearized in terms of r. Refs. [7–9] employ the transverse
system inertia As¼ I1þmh2 where I1 is the transverse
inertia of the body alone but relative to the system CoMs.
Therefore, I1 has a hidden dependency on m due to the
shift from CoMb to CoMs which introduces a transfer term
in the transverse inertia moment.

The following eight rows in Table 2 define the non-
dimensional parameters that help reducing the complex-
ity of the equations. The angle t replaces t as independent
variable. The inertia ratio l¼C/Ab is equal to the symbol L
in Refs. [7–9] but its meaning is not transparent. For a
satellite with an appended solid motor, the spin axis is the
minimum axis of inertia, i.e. lo1, but all results remain
valid for l41 as well.

The normalized spring constant kn is defined in terms
of pk¼AbO2/l2, which is independent of k and m. The
thrust F is normalized by pth¼AbO2/9l9 where the absolute
value of the particle’s axial position keeps pth positive. For
stability, it turns out that lo0 is the more interesting
case. The mass-spring resonance frequency has been
normalized by the square of the spin rate and helps in
interpreting the results. We analyze the stability condi-
tions in terms of kn and m for a system defined by the
normalization parameters pk, pth, pres, f, and l.

Finally, the last two rows of Table 2 provide the
definitions of the non-dimensional parameters {b2,T0}.
They are useful because the stability diagram may be
expressed by a single curve T0(b2) which is valid for all
possible physical systems (see Refs. [7–9]). A single point
{b2,T0} provides only one relationship between the eight
independent parameters and represents many physical
systems. The definitions in Table 2 show that T0 depends
on the difference between k and m whereas b2 represents
the ratio k/m. This distinction is less transparent in the
formulations of Refs. [7–9].

The parameters in Table 2 are well suited for studying
the general case, i.e. in the absence of singularities. For
special cases such as zero stiffness k or zero length l,
different parameter combinations may be more efficient
and will be used as appropriate. For example, if the spring
constant k vanishes, we have the point {b¼0, T0¼�mf/l2}

Fig. 1. Reference configuration for model.

Table 1
Summary of physical parameters.

Parameter Unit Description

M kg Body mass

C kg m2 Axial moment of inertia (spin

inertia)

Ab kg m2 Transverse moment of inertia for

axes passing through body CoM

F N Thrust level of rocket motor

O rad/s Spin rate

l m Vertical coordinate of particle

relative to body CoM

m kg Particle mass

k kg/s2 Spring constant or stiffness
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which is a perfectly valid physical system. Table 2 shows
that the condition T0¼0 may occur in two ways, i.e. either
due to l¼0 when the particle is attached in the plane of
the body CoMb, irrespective of any other parameters, or
when kn¼mf. An interpretation of the latter condition is
provided in the next section. We also use the parameters
bl

2
and T0l in order to separate the dependency on the

inertia ratio l.
With the definitions in Table 2, the stability boundary

consists of a family of curves parameterized in l.
In practice, we study the influence of {k, m} on the
stability of the system given by:

b2
¼ f bðk,m;M,Ab,C,OÞ; T0 ¼ f T ðk,m;M,Ab,C,O; F,lÞ

The numerical example uses the data of the Ulysses
injection into a trajectory to Jupiter by the Shuttle Discovery
in December 1990 by a special PAM-S version that contains
the STAR-48 motor (see Refs. [17,18]). The mass properties
at the end of the burn are M¼365.16 (Ulysses)þ221.4
(dry mass PAM-S)¼586.56 kg; C¼301.43 (Ulysses)þ76.26
(PAM-S)¼377.69 kgm2; Ab¼563 kgm2 (i.e., the average value
of the transverse inertias as Ulysses is asymmetric due to the
presence of an RTG); l¼�1.5 m; O¼72 rpm; F¼72 kN. The
final acceleration is about 12g which is much larger than for
any previous injection by a PAM module. These data were
essentially frozen before the launch. Table 3 summarizes the
main derived parameters for Ulysses.

3. Results for the transverse dynamics

3.1. Equations of motion

The model to be analyzed here consists of an axi-
symmetric spinning rigid body augmented with a mass
particle that may move within a plane normal to the spin
axis. The reference motion consists of a body spinning at a
constant rate O and the particle located on the spin axis.
The linearized equations of the transverse dynamics
about this reference motion are described by the first-
order variables {o1, o2, x1, x2}. The rates o1, o2 are the
transverse angular velocity components, normalized by
the spin rate O, in a body-fixed reference frame. The
variables x1, x2 are the components of the particle dis-
placement relative to the spin axis, see Fig. 1.

Refs. [7–9] provide the relevant equations of motion
within a principal reference frame with origin at the system
CoMs. We modify these equations by using the nomencla-
ture defined in Table 2 and adopt t as the independent
variable with ( � )0 denoting d( � )/dt. This leads to the
following system of equations:

Aso01þðC�AsÞo2 ¼mhfx002þ2x01�x2g�ðmF=O2
Þx2

Aso02�ðC�AsÞo1 ¼mhf�x001þ2x02þx1gþðmF=O2
Þx1

x001�2x02� 1�o2
res=ð1�mÞ

� �
x1 ¼�hðo02þo1Þ=ð1�mÞ

x002þ2x01� 1�o2
res=ð1�mÞ

� �
x2 ¼ hðo01�o2Þ=ð1�mÞ ð1a� dÞ

Eqs. (1a,b) are the standard Euler equations with
torques due to the thrust force and the particle’s motion.
Eqs. (1c,d) describe the internal motion of the particle
which may be excited by the transverse rates o1, o2

Next, we eliminate the terms within {y} on the
right-hand-sides of Eqs. (1a,b) by using Eqs. (1d,c),
respectively. Furthermore, we write Eqs. (1a,b) in terms
of the moments of inertia relative to the body CoMb:

Abo01þðC�AbÞo2þfmlo2
resþmF=O2

gx2 ¼ 0

Abo02�ðC�AbÞo1�fmlo2
resþmF=O2

gx1 ¼ 0 ð2a;bÞ

Table 2
Summary of auxiliary parameters.

Parameter Unit Definition Description

m – m/(Mþm); 1�m¼M/(Mþm) Ratio relationship between particle and total mass

h m (1-m)l Vertical distance of particle to the system CoMs

As kg m2 Abþ(1�m)ml2 Transverse moment of inertia relative to system CoMs

t – Ot Angular independent variable

0olo2 – C/Ab Precession rate of angular velocity, normalized by the spin

rate O; l�1 is the nutation rate with l�1o0 if CoAb

pk40 kg/s2 AbO2/l2 Auxiliary parameter

knZ0 – k/pk Normalized spring constant or stiffness

pth40 kg m/s2 AbO2/9l9 Auxiliary parameter

f – F/pth Normalized thrust force of rocket motor

pres40 – Ab/(Ml2) Auxiliary parameter

o2
res – k=ðm O2

Þ Normalized resonance frequency of m attached to a fixed

point (with an elastic spring of stiffness k)

bl
2
, b2 – bl

2
¼o2

res/(1�m); b2
¼bl

2
/l2

) b2
l ¼ preskn=m

T0l, T0 – T0l¼kn�mf; T0¼T0l/l2
) T0l ¼ ðk l2�m9l9FÞ=AbO

2

Table 3
Summary of Ulysses derived parameters (at end of burn).

Parameter Unit Value

l – 0.67085

pres40 – 0.42659

pk40 kg/s2 14225

pth40 N 21337

f – 3.3744

(bl
2
)max¼ fpres – 1.4395

bl
2
¼b2l2 – 0.42659kn/m

Tl0¼l2T0 – kn�3.3744m
mlim (for k¼0) kg 20.232
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The identical terms within {y} in Eqs. (2a,b) may be
expressed in terms of the parameter T0l defined in the last
row of Table 2 as follows:

fmlo2
resþmF=O2

g ¼ Ab kn�mf
� �

=l¼ AbT0l=l ð3Þ

The negative sign in front of f holds for a particle located
aft of the CoMb for which lo0.

Subsequently, the terms on the right-hand-sides of
Eqs. (1c,d) can be simplified by means of Eqs. (2) and (3):

lðo02þo1Þ ¼ llo1þðkn�mf Þx1 ¼ llo1þT0lx1

lðo01�o2Þ ¼�llo2�ðkn�mf Þx2 ¼�llo2�T0lx2 ð4a;bÞ

The final form of the system of Eqs. (1) becomes:

o01þðl�1Þo2þT0lx2=l¼ 0

o02�ðl�1Þo1�T0lx1=l¼ 0

x001�2x02�ð1�b
2
l�T0lÞx1þ llo1 ¼ 0

x002þ2x01�ð1�b
2
l�T0lÞx2þ llo2 ¼ 0 ð5a� dÞ

The transition from Eqs. (1) to (5) corresponds to a
shift in the origin from the system CoMs to the body CoMb.
(Note that the angular velocity is independent of the
reference point on the body). The combined parameters
bl

2
and T0l show up naturally in this formulation. Eqs. (5)

may also be obtained directly by the Newton–Euler
method as was done in Ref. [10]. The two approaches
are equivalent.

Eqs. (5) have accomplished the separation of the
derivative terms of the oi and xi (i¼1, 2) variables.
Furthermore, the parameters appearing in Eqs. (5)
refer exclusively to the body and the particle’s position
within the body. The terms xi

0 072xk
0 �xi (for i,k¼1,2) in

Eqs. (5c,d) describe the relative motion of a particle on a
spinning base. The remaining force terms in Eqs. (5c,d) are
due to the spring, the thrust, and the nutation of the body,
respectively.

The 6-th order system in Eqs. (5) is suitable for
stability analyses but contains no information on the
orientation of the body. The orientation can be obtained
by introducing two supplementary equations for the
small attitude angles {y1,y2} in terms of the rates oi

(i¼1, 2). The corresponding 8-dimensional system of
equations is given in Appendix A in matrix form.

Fig. 2 illustrates the two torques acting on the body for
the special case when x1¼0 and x240. Eq. (5a) shows
that the total normalized torque is �T0lx2=l. The physical
torque T in Fig. 2 has two components acting along the
x1-axis:

T ¼ kx29l9�mx2F ¼ ðAbO
2
ÞT0lx2=9l9

The torque due to the spring is positive and the torque
due to the thrust is negative and is identical to the thrust
torque about CoMs. The sign of T0l determines whether
the result is repelling or attracting.

3.2. Special solutions for T0¼0

The case T0¼0 occurs when either l¼0 or kn¼mf as
seen from Table 2 and subsequent text. In the first case
we have h¼ l¼0 and As¼Ab with the consequence that the
three normalization constants pk, pth, and pres are singular.

Nevertheless, the T0l/l terms in Eqs. (5a,b) remain well
defined when l-0. This can be confirmed with the help
of the definition of T0l in Table 2:

liml-0fT0l=lg ¼ liml-0flkþmFg=ðAbO
2
Þ ¼ mF=ðAbO

2
Þ ð6Þ

Therefore, in the special case l¼0, the system in Eqs. (5)
takes the following form:

o01þðl�1Þo2þmFx2= AbO
2

� �
¼ 0

o02�ðl�1Þo1�mFx1= AbO
2

� �
¼ 0

x001�2x02�ð1�b
2
lÞx1 ¼ 0

x002þ2x01�ð1�b
2
lÞx2 ¼ 0 ð7a� dÞ

The characteristic equation of the system in Eqs. (7)
factors into two decoupled parts:

p2þðl�1Þ2 ¼ 0; p4þ2ð1þb2
lÞp

2þð1�b2
lÞ

2
¼ 0 ð8a;bÞ

Eq. (8a) produces the two roots p1,2¼7 j(l�1) which
correspond to the body’s nutation. The particle does not
participate in this motion and remains at its initial axial
position. The eigenvectors corresponding to these roots
are [o1, 7 jo1, 0, 0]T, respectively.

The four roots of the bi-quadratic equation in Eq. (8b)
can be calculated as

p3,4 ¼ 7 jð1þlbÞ; p5,6 ¼ 7 jð1�lbÞ ð9a;bÞ

In the case when l¼0, bl
2

has positive values and the
roots in Eqs. (9) remain on the imaginary axis. The results
in Eqs. (9) indicate that the motion is marginally (or
oscillatory) stable as long as bla1. In these modes, the
circular particle motion x1, x2 goes together with a similar
motion in the rates o1, o2. In the case when la0, the
condition T0¼0 implies that bl

2
can assume only one

possible value, i.e. bl
2
¼ fpres, see Table 2. If the value of

fpres happens to be equal to 1 (i.e., when o2
res¼1�m), then

bl¼1 and p5,6 is a double zero root for l¼0 as well as for
la0. In the section ‘‘Constant solutions’’ we will show in
detail that also these solutions are marginally stable.

3.3. Special solutions for k¼0 (b2
¼0)

In this case, the restoring force on the particle is zero.
Because of the gyroscopic coupling effect between the

Fig. 2. Illustration of torques acting on the body.
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particle and the rotating body, the case k¼0 is not
necessarily meaningless or even unstable. In fact, it
defines an end point on the stability curve. In order to
simplify Eqs. (5) for the special case k¼0 we introduce the
parameter lr based on the definition of T0l in Table 2:

ðT0lÞk ¼ 0 ¼
m F l

AbO
2
¼
m f l

9l9
¼

l

lr
with : lr ¼

9l9
m f

ð10a;bÞ

Eqs. (5) can now be reduced to the following form:

o01þðl�1Þo2þx2=lr ¼ 0

o02�ðl�1Þo1�x1=lr ¼ 0

x001�2x02�ð1�l=lrÞx1þ llo1 ¼ 0

x002þ2x01�ð1�l=lrÞx2þ llo2 ¼ 0 ð11a� dÞ

and the corresponding 6-th order characteristic equation
can be written as

ðp2þ1Þfðp2þ l=lrþl�1Þ2þp2ðl�2Þ2g ¼ 0 ð12Þ

The roots p1,2¼7 j are associated with the spin frequency
and they are always a solution (for any value of m). The
eigenvectors corresponding to the spin frequency are as
follows:

½j=ðllrÞ,�1=ðllrÞ,�j,1�T ð13Þ

This shows that the particle is always located opposite of
the transverse angular velocity vector.

The second part of Eq. (12) is a bi-quadratic equation
for the remaining four roots:

p3,4 ¼ jð1�l=27
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=lrþl

2=4

q
Þ

p5,6 ¼ jð�1þl=27
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=lrþl

2=4

q
Þ ð14a;bÞ

As long as the expression under the square root is
positive, these roots are on the imaginary axis and the
system is oscillatory stable. The expression under the
square root can only become zero (and negative) if l is
negative because the other two parameters lr and l2 are
always positive. This means that the particle must be aft
of the body CoMb.

In the case when the term under the square root in
Eqs. (14) is negative the system is unstable. Thus, the
imaginary part l/2�1 of the roots pi (i¼3,y,6) is the
limiting value where the roots leave the imaginary axis
and start obtaining opposite real parts. For a satellite
body, the value of l/2�1 is always non-zero (note
thatl¼2 for a flat plate).

Fig. 3 shows the evolution of the roots p3 and p4 as
functions of m. The starting positions on the imaginary
axis correspond to m¼m¼0 which implies that
l/lr¼(T0l)k¼0¼0, see Eq. (10a). Eq. (14a) shows that
p3¼ j and p4¼ j(1�l), i.e. the spin and nutation frequen-
cies of the body, respectively. For increasing values of m,
the two roots approach each other and become equal to
1�l/2 when l/lr¼�l2/4 or T0¼�1/4. The particle mass
ratio at this point follows from Eq. (10a):

ðT0Þk ¼ 0,lim ¼ mlim

F l

Abl
2O2
¼�

1

4
) mlim ¼

1

4

C2O2

Ab9l9F
ð15a;bÞ

When the parameters M, F, C, and Ab are known, Eq. (15b)
provides the relationship between the limiting permissible

slag mass mlim and the spin rate O as follows:

mlim ¼M
O2

O2
M�O

2
, with : OM ¼

2

C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ab l
		 		Fq

ð16a;bÞ

For further increasing mass values beyond mlim, the
two roots leave the imaginary axis in opposite directions
(see Fig. 3) and the resulting motion becomes unstable.

The stability condition in Eqs. (15) may also be
expressed as a condition on the distance 9l9:

l
		 		 r 1

4

C2O2

AbF
1þ

M

m


 �
ð17Þ

This expression agrees with results in Refs. [7–9].
Furthermore, it has been derived in Ref. [18] and is cited
in Ref. [22]. An interesting interpretation of Eq. (17) is that
there is a limit on the distance that the particle may be aft
of the body CoMb for a given satellite configuration {m, M,
Ab, C, O; F}. Increasing values of M, C, O raise this limit
whereas increases in m, Ab, F reduce it.

Fig. 4 shows the result of Eq. (17) for the specific Ulysses
parameters. It confirms that a spin rate of 72 rpm can
stabilize a slag mass of about 20 kg. If, however, the esti-
mated value of the slag mass were to be 200 kg, a much
higher spin rate of 200 rpm would be needed for stabilization.

3.4. Conditions for constant solutions

The combination of system parameters that allow
constant or zero-frequency (i.e., p¼0) solutions is of
particular interest. For conservative systems they define
the stability boundary, see Refs. [20,21]. For a non-
conservative system, however, a root p¼0 does not define
the stability limit when its multiplicity equals the number
of independent eigenvectors or the degeneracy of the
system matrix, see Refs. [20,21]. Such a case occurred
above in the subsection for T0¼0.

Constant solutions occur when all derivative terms in
Eqs. (5a-d) vanish, so we have:

ðl�1Þo2þT0lx2=l¼ 0

ðl�1Þo1þT0lx1=l¼ 0

ð1�b2
l�T0lÞx1�llo1 ¼ 0

ð1�b2
l�T0lÞx2�llo2 ¼ 0 ð18a� dÞ

Fig. 3. Evolution of roots p3 and p4 as functions of m.
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This 4�4 system decouples into two 2�2 systems in
terms of the variables {o1, x1} and {o2, x2}, respectively.
The condition that the determinants of each of the 2�2
systems vanish gives the non-trivial stationary equili-
brium solutions for oi and xi (i¼1, 2). Therefore, constant
equilibrium solutions exist when the following relation-
ship between the parameters is satisfied:

Det
l�1 T0l=l

�ll 1�b2
l�T0l

" #
¼ 0) T0l ¼ ð1�lÞð1�b

2
lÞ ð19a;bÞ

The physical meaning of this result becomes more
transparent when considering the original 2�2 systems
in Eqs. (1). In the absence of the derivative terms, the
2�2 system {o2, x2} is

ðC�AsÞo2þmhx2þðmF=O2
Þx2 ¼ 0

ho2�ð1�m�o2
resÞx2 ¼ 0 ð20a;bÞ

The general first-order relationship between the
two small attitude deviation angles {y1, y2} and the
non-normalized angular rate o2 is o 2 ¼

_y2þOy1.
As the normalized solution o2 is constant, the same is
true for {y1, y2} so that o2 equals y1. Making this
substitution in Eq. (20a) is sufficient since Eq. (20b) will
be compatible when the determinant condition is satis-
fied. Thus, we find a relationship between y1 and x2 and
similarly for y2 and x1:

y1 ¼
mðhþg=O2

Þ

As�C
x2

y2 ¼�
mðhþg=O2

Þ

As�C
x1; with : g ¼ F=ðmþMÞ ð21a� cÞ

The results of Eqs. (21) are the tilt angles of the spin
axis caused by a non-zero displacement {x1, x2} of the
particle m and expressed in terms of the system para-
meters h and As. In the absence of the thrust, these results
reduce to the standard expressions for the tilt angles due
to the system cross-inertia terms {Ixz, Iyz} induced by the
non-zero particle position. The presence of the thrust
force modifies these tilt angles because of the displace-
ments x1 and x2.

When using the original system in Eqs. (20) we find for
the determinant as in Eqs. (19):

o2
res ¼ ð1�mÞ

Ab�Cþmf Ab

Ab�Cþð1�mÞml2

( )
ð22Þ

This result allows us to calculate the spring constant value
that produces the constant tilt angles.

A mass particle on a spinning rigid body at a distance r

from the spin axis feels a constant centrifugal acceleration
O2r which corresponds to the state of internal stress as
dictated by the rigid body model. Since our particle is not
connected to any other points of the rigid body, the spring
has to counteract this acceleration. Thus, in order to
generate a constant solution, the effect of the spring
constant k must precisely match this centrifugal force.
A constant solution has always multiplicity two in the
original system in Eqs. (1). This is because the tilt may
occur in any direction in a symmetrical body. The remain-
ing two roots are calculated in Appendix B.

3.5. Representation of constant solutions

The constant solutions obtained in Eq. (19b) may be
visualized within the {T0,b2} plane, while considering l as
parameter. They represent a family of straight lines
Tc(b2;l), see Fig. 5. The intersection points of the ascend-
ing and descending lines indicate that a set of system
parameters that allows constant solutions may be gener-
ated by two different values of l. The lines originate at
b2
¼0 with values Tc(0;l)¼(1�l)/l2. They have a

negative (or positive) slope for a satellite spinning
about its minimum (or maximum) inertia axis, i.e.,
0olo1 (or 1olo2).

The family of straight lines Tc(b2;l) in Fig. 5 fills the
part of the plane above their envelope curve T0(b2),
which is established in Appendix C as a cubic equation
in T0(b2):

T0
3
þð3b2

þ1=4ÞT0
2
þð3b2

þ5Þb2T0þb
2
ðb2
�1Þ2 ¼ 0 ð23Þ

Every point on the envelope curve corresponds to a set
of systems that allow stable stationary solutions. We
show in the next section that this envelope represents
also the stability boundary.

Fig. 4. Required spin rate as function of slag mass for Ulysses.

Fig. 5. Family of constant solutions (p¼0) and their envelope T0(b2).

F.L. Janssens, J.C. van der Ha / Acta Astronautica 94 (2014) 502–514508



Author's personal copy

4. Stability results

4.1. Stability boundary

By introducing the complex variables oc¼o1þ jo2 and
xc¼x1þ jx2, we can write Eqs. (5) as

o0c�jðl�1Þoc�jT0lxc=l¼ 0

x00cþ2jx0c�ð1�b
2
l�T0lÞxcþ lloc ¼ 0 ð24a;bÞ

This complex combination of variables has a clear physical
meaning. The two harmonic solutions {o1, o2} have a phase
shift of 901 (i.e., if o1 is a sine, o2 will be a cosine function).
The same holds for {x1, x2}. For an asymmetric body,
however, this combination is not possible.

The general case for harmonic solutions with four
variables is that three of them may have an arbitrary
phasing with respect to the fourth. For the system under
consideration, the phases between o1 and o2 as well as
between x1 and x2 are fixed so that only the phasing
between oi and xi (i¼1, 2) is still open at this stage.
An obvious advantage of using the complex combination
is that the corresponding characteristic equation is of
order 3 instead of 6.

To investigate the stability, it suffices to analyze the
characteristic equation of Eqs. (24), while keeping in mind
that each of its solutions has multiplicity two in the
original system:

Det
p�jðl�1Þ �jT0l=l

ll p2þ2jp�1þb2
lþT0l

" #
¼ 0 ð25Þ

When introducing the frequency parameter o defined
by p¼ jo we find that all three coefficients cj (j¼1, 2, 3) of
the characteristic equation of Eqs. (25) are real:

o3þc2o2þc1oþc0 ¼ 0 ð26aÞ

with:

c2 ¼ 3�l; c1 ¼ 3�2l�ðb2
lþT0,lÞ; c0 ¼ ð1�lÞð1�b

2
lÞ�T0,l

ð26b� dÞ

If Eqs. (26) have three real roots, the system is stable.
The transition to one real root and two complex conjugate
roots can only occur via a double root (with multiplicity
four in the original system). The general condition
that a cubic equation has a double root is given by
Eq. (C.4) in Appendix C. When applying this condition to
Eqs. (26) we obtain the following cubic equation in T0l

with coefficients that depend only on bl
2

and l:

~SðT0l,b2
l ,lÞ ¼ T3

0lþð3b
2
lþl

2=4ÞT2
0lþð3b

2
lþ5l2

Þb2
lT0l

þb2
lðb

2
l�l

2
Þ
2
¼ 0)

SðT0,b2
Þ ¼ T0

3
þð3b2

þ1=4ÞT0
2
þð3b2

þ5Þb2T0

þb2
ðb2
�1Þ2 ¼ 0 ð27a;bÞ

Obviously, the final result in Eq. (27b) is exactly identical
to Eq. (23). Hence, this proves that the envelope of the
stationary solutions is the stability curve. This property was
mentioned (but not proven) in Ref. [9] in connection with
the stability boundary in the presence of damping.

Fig. 6 shows the stability curve S(T0,b2), which is identical
to the curves shown in Refs. [7–9] for the case without

damping. It is straightforward to calculate the tangent of
T0(b2) in Eq. (27b) from dT0=dðb2

Þ ¼�f@S=@ðb2
Þg=ð@S=@T0Þ.

This produces the slope of 451 at the origin b2
¼0 and the

asymptotic result of �451 for the slope at b2-N.
After combining terms, we can write the characteristic

equation in Eq. (26a) in a simpler way:

o3
1�lo2

1�l
2
ðb2
þT0Þo1þl

3b2
¼ 0, with : o1 ¼oþ1 ð28Þ

The new variable o1 is simply the frequency o shifted
by the spin rate (e.g., the zero frequency o¼0 corre-
sponds to o1¼1). The constant solutions of Eq. (28) occur
when b2

¼0. This is the condition that the original system
has the spin rate as system frequency which agrees with
Eq. (12) in the discussion for the case k¼0 above.

An even simpler form is obtained from Eq. (28) when
o1 is scaled by l:

ðo1=lÞ3�ðo1=lÞ2�ðb
2
þT0Þðo1=lÞþb

2
¼ 0 ð29Þ

This equation is known as C0 in Refs. [7–9] where it is
established via changes of variables and is used for the
derivation of the stability condition. The result is of course
compatible with Eq. (27b) which follows directly from the
characteristic equation of the system in Eqs. (24).

It is of interest to note that Ref. [10] produces a similar
stability curve for the case when the internal motion is due
to a spherical pendulum. In this case, the frequency o2

res

contained in the horizontal coordinate b2 is simply replaced
by the normalized pendulum frequency (i.e., g/(O29l9) or Fr

-1

in the notations of Ref. [10]). For the vertical coordinate T0,
the pendulum attachment location z0 replaces l in the pth

and pk parameters which contain now also the particle mass.
This observation illustrates how the parameter k may be
linked to alternative models for internal motion.

4.2. Representations of stability boundary in kn and m

Next, we express the stability curve in the physical
parameters kn and m. By using the parameters pth, pres, and
pk (see Table 2), we can replace T0l, bl

2
in Eq. (27a) by:

b2
l ¼ kn pres=m¼ akn; T0l ¼ kn�mf ¼ kn�b ð30a;bÞ

Fig. 6. Stability boundary T0 as function of b2 (Eq. (27b)).
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with : a¼ pres=m; b¼ mf ð30c� dÞ

Because both substitutions in Eqs. (30a,b) are linear in kn,
we obtain a cubic equation in kn with coefficients di that
depend on the parameters a and b, defined in
Eqs. (30c,d), and l:
_
SðknÞ ¼ k3

nþd2k2
nþd1knþd0 ¼ 0 ð31aÞ

with:

d2 : �3b=ð1þaÞþl2
f1=4þ5a�2a2g=ð1þaÞ3

d1 : 3b2=ð1þaÞ2þl2
fal2
�b=2�5abg=ð1þaÞ3

d0 : b2
ðl2=4�bÞ=ð1þaÞ3 ð32a� cÞ

Because kn is the normalized spring constant, the only
physically meaningful roots of the cubic polynomial in
Eq. (31a) are those that are real and positive. Table 4 provides
a summary of the signs of the three roots for kn for different
ranges of the slag mass ratio m for the Ulysses data.

Table 4 shows that root 1 is always real and positive. Its
behavior as a function of b2 is illustrated in Fig. 7a for the
part of the curve that is of interest in practice, i.e. mo0.133
corresponding to m¼90 kg. After substituting root 1 back
into Eqs. (30) and using Eqs. (27) we reestablish the
corresponding curve in the {T0l, bl

2
} plane, see Fig. 7b. It

starts with mass ratio m¼0 at point A, i.e. {bl
2
¼l2
¼0.450,

T0l¼0} which corresponds to the point {b2
¼1, T0¼0} in

Fig. 6. At the mass ratio of m¼0.133, the kn value has
increased to 0.359 and bl

2
to 1.15 which corresponds to

b2
¼2.56 in Fig. 6. Figs. 7b and 6 show that, at least in the

half-plane bl
2
4l2 (or b241), an increase in the spring

stiffness k has always a positive effect on the stability.
Table 4 shows that root 2 is the only other root that

produces a positive kn and this only in a limited range of the
mass ratio. As shown in Fig. 7c, kn40 in the range from
point C to point D where mE0.0333 (i.e., mE20.2 kg).
Fig. 7d shows that the part of the stability curve correspond-

ing to root 2 covers the range 0obl
2
o0.45 (i.e., 0ob2o1

in Fig. 6). The origin m¼0 of Fig. 7c corresponds to point C,

which is {bl
2
¼l2, T0¼0} in Fig. 7d and {1,0} in Fig. 6.

The point C in Fig. 7d matches precisely with point A in
Fig. 7b. When m increases, so does kn initially, see Fig. 7c.
At point E, for m¼0.0127, kn reaches its maximum value of
4.08�10�3 or k¼58.5 kg/s2 and then returns to zero at
point D with mass ratio 0.0333. The end-point D on the
T0l axis in Fig. 7d is T0l¼�l2/4¼�0.1125 or T0¼�1/4,
which is consistent with the result in Eq. (15a). When
combining Fig. 7b and d (and scaling by the constant l2),
we retrieve Fig. 6.

Fig. 6 shows that the point {T0¼0, b2
¼1} represents

the worst case for stability. In Fig. 7c and d this point

corresponds to point C where m¼k¼0. It is a singular case
since there is no particle but only the rigid body. The k

value is meaningless when m vanishes as there is no mass
on which the spring may act. When approaching point C
along the boundary curve, k and m go to zero at the same
rate so that o2

res (and b2) have finite limits. In other words,
when the resonance frequency of the spring-mass system
approaches the body’s precession frequency l¼C/Ab, the
mass m of the particle that can be stabilised goes to zero
(i.e., m-0, m-0, and b2-1).

The properties of the stability boundary for bl
2

over the
interval (0, l2

¼0.45) in Fig. 7c and d are surprising. Starting
from point D (i.e., b2

¼k¼0), Fig. 7c shows that an increase in
kn reduces the slag mass that can be stabilized and continues
to do so until the particle mass ratio reaches the value 0.0127
at point E. Afterwards, while staying on the boundary curve,
k and m decrease to zero. Finally, at point C, both the kn and
mf terms of T0 vanish separately but o2

res remains well-
defined as was mentioned in the previous paragraph.

Fig. 8 illustrates the evolution of the resonance frequency
o2

res¼(1�m)b2
l of the spring on the stability boundary as

function of the particle mass that can be stabilised. Starting
from point D, i.e. kn¼0, m¼0.0345 M (or m¼0.0333), the
resonance frequency increases to the value l2

¼0.450 at
point A¼C when the particle mass approaches zero on the
lower (blue) curve. Subsequently, the frequency follows the
upper (red) curve and increases again until its maximum
value at point B with mass ratio m¼0.133 in Fig. 7a. The
maximum is reached at point B in Fig. 8 with m/M¼0.153
(i.e., m¼90 kg), which corresponds to b2

l¼1.15 or b2
¼2.56.

The decrease of the resonance frequency to the right of
point B proves that the increase of b2 in Fig. 6 for values
beyond b2

¼2.56 is due to an increasing slag mass and not
because of an increasing value of o2

res.

4.3. Different representations of the stability boundary

The properties of the boundary curves can be more
easily understood by studying the mapping from {T0l, bl

2
}

onto {kn,m} in more detail. The definitions in Table 2
suggest that it is straightforward to parameterize the
relationship T0lðb

2
lÞ in either kn or m:

T0lðb
2
l; knÞ ¼ knð1�f pres=b

2
lÞ; T0lðb

2
l;mÞ ¼ mðb

2
l=pres�f Þ

ð33a;bÞ

Eq. (33a) defines a family of hyperbolas based on the
parameter kn and Eq. (33b) identifies a family of straight
lines based on m, respectively. Thus, we can plot loci of
constant kn and m (which are both positive) as illustrated
in Fig. 9a–d where each combination {kn, m} corresponds
to a point in the {T0l, bl

2
} plane. For the case l40, Fig. 9a

shows that all feasible points lie within the first quadrant
of the {T0l, bl

2
} plane and, therefore, represent stable

configurations.
The case lo0 in Fig. 9b–d is more complicated. When

using the Ulysses data and starting on the T0l axis we find
from Fig. 9c and d that the mass ratio mE0.0333
(mE20.2 kg) is the maximum that can be stabilised with-
out the spring. When moving along the line for this mass
ratio (and adding the spring), we enter immediately into the

Table 4
Spring constant kn versus slag mass ratio m (Ulysses values).

Slag mass ratio m Spring constant kn

Interval Root 1 Root 2 Root 3

0–0.03334 40 40 o0

0.03334–0.03906 40 o0 o0

40.03906 40 Complex conjugate
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unstable domain. For increasing kn, the system becomes
stable when kn¼0.07, i.e. at bl

2
¼0.9 orb2

¼2.0, see Fig. 9c
and d. The same applies when starting from an unstable
system and a higher mass ratio. However, when starting
from a stable system with a smaller mass ratio, we enter the

unstable domain for some small kn value and exit when the
stiffness has increased significantly. Thus, for smaller mass
ratios, there is a range of stiffness values that destabilize the
system. This range approaches zero together with the mass
ratio (note that the system is stable for m¼0). Fig. 9b shows
that the hyperbolas for small kn values cut the stability
boundary twice which confirms the discussion of Fig. 7c.
The point E of Fig. 7c lies on the curve (kn¼0.0042,
m¼0.0127) in Fig. 9c where it touches the stability bound-
ary on its convex side. Higher kn values stay below the
boundary and lower kn cut the boundary twice.

A significant part of the second quadrant of the {T0l, bl
2
}

plane corresponds to unrealistic slag masses. The point
bl

2
¼ fpres¼1.4395 or (b2)max¼ fpres/l2

¼3.1986 is the maxi-
mum that needs to be considered, regardless of the k and m

values. This is because, when assuming positive k values, we
find that values of b243.1986 correspond to values T040
which are in the first quadrant.

4.4. Consequences for double roots

The limit on the permissible value for bl
2

has conse-
quences for the possible values of the double root. When
the condition for a double root od is met, this root is also a
solution of the derivative of the characteristic equation.

Fig. 7. (a) kn(m) for Root 1, (b) kn for Root 1 in {bl
2
,T0l} plane, (c) kn(m) for Root 2 and (d) kn for Root 2 in {bl

2
,T0l} plane.

Fig. 8. o2
res versus slag mass/body mass on stability boundary. (For

interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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For instance, in the form of Eq. (28) we have:

3o2
1d�2lo1d�l

2
ðb2
þT0Þ ¼ 0 ð34Þ

Therefore, the loci of double roots are given by the
straight lines Td(b2;l) as follows:

Td ¼�b
2
þð3o1d=l�2Þo1d=l ð35Þ

where o1d is one of the roots of Eq. (34). These lines are
illustrated in Fig. 10 and their intersections with the stability
boundary provide the values of the double roots. Any line
parallel to the second bisector must cut the stability curve
because its asymptotic direction for b2-N is �451.

The coordinate of the end-point Te of these lines on the
T0 axis is found as

Te ¼ Tdðb
2
¼ 0Þ ¼ 3ðo1d=lÞ2�2o1d=l ð36Þ

This parabola in (o1d/l) reaches its top at the coordinates
{Te¼�1/3, o1d/l¼1/3} but the corresponding line Td¼

�(b2
þ1/3) does not intersect the stability curve. Fig. 10

shows that the minimum value of Te is �1/4 as was
calculated in Eq. (15a). This corresponds to the values o1d/l
¼1/2, 1/6 and od¼l/2�1 and l/6�1. The first solution
belongs to the plus sign and is the result of Eq. (14b) whereas
the other one is an extreme value of the characteristic
equation in Eq. (34). When the end-point Te¼0 we find
o1d/l¼2/3 which corresponds to od¼2l/3�1.

The line with end-point Te¼1 intersects the stability
curve at b2

¼1 and gives od¼l�1 which corresponds to
the nutation motion in Eq. (8a) and agrees with all
statements regarding the point b2

¼1. The end-point
Te¼2 produces the root o1d¼(1þO7)l/3E1.215l and
od¼o1d�1. The intersection of the stability curve occurs
when b2E2.1 which is getting closer to its maximum
possible value. Finally, Fig. 10 indicates that the end-point
Td¼3 leads to an intersection of the stability boundary at
b 2E3.4. This is beyond the value of (b2)max¼3.1986 so
this result is not meaningful. Finally, we mention that the

Fig. 9. (a) parametric lines in kn, m for l¼1.5; (b) parametric lines in kn, m for l¼�1.5; (c) stability limit for Ulysses case and (d) extent of instability

for m values.

Fig. 10. Lines defining the possible values of the double root.
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analysis of the possible range for od may also have
repercussions on the validity of the stability boundary
derived in Ref. [9] for the case with damping.

5. Conclusion

The paper analyzes the instability caused by the STAR-48
solid rocket motor on the basis of the model proposed in the
pioneering paper by Mingori and Yam [7]. Their model
considers a mass particle attached via a spring to the satellite
body to describe the internal motion of the slag mass within
the motor. The present study reformulates the stability
condition in terms of the two parameters that represent
the internal motion and are directly responsible for the
stability. This different approach leads to valuable new
insights in the stability characteristics. An analytic form of
the stability boundary is established and it is proven that this
boundary is identical to the envelope of the stationary (i.e.,
constant) equilibrium solutions. This is an interesting theo-
retical result as it connects the existence of a stationary
solution of a non-conservative system to its stability. The
relation between the manifold defining the stability bound-
ary and the physical parameters shows that only part of this
manifold corresponds to a physical system. The case of most
practical interest is when the slag mass is aft of the body’s
center of mass. The system is unstable when the spring is
absent and the particle mass exceeds a given value. It may
then be stabilized by adding a spring of sufficient stiffness
which is intuitively clear. For a sufficiently small slag mass,
the system is stable even in the absence of the spring. When
increasing the spring stiffness in this case there will be a
value for which the system becomes unstable. A further
increase of the stiffness will stabilize the system again. The
range of the stiffness values that destabilize the system in
this case shrinks and approaches zero along with a decreas-
ing slag mass. The paper also provides explicit results for the
values of the double roots located on the stability boundary.

Appendix A. MGKN formulation

After introducing the small attitude angles {y1, y2} we
can eliminate {o1,o 2} from Eq. (1) by substituting:

o1 ¼
_y1�Oy2; o2 ¼

_y2þOy1 ðA:1Þ

The state vector qT
¼[y1, y2, x1, x2] describes small

deviations from the reference state q¼0 in a frame rotat-
ing uniformly at O (which is not a body-fixed frame). By
using the ‘Ansatz’ exp(pt), we can write the equations in
matrix form as Z(p)q¼0 where Z(p) stands for the matrix:

with m1¼1�m, M¼MT
¼0, K¼KT, G¼�GT, and N¼�NT.

We note that M is the mass matrix and that the anti-
symmetric matrices G and N are typical for a spinning
system with follower forces. The thrust F changes the

generic model from a conservative MGK system to a non-
conservative MGKN system which has a profound impact on
the possible instability mechanisms (see Refs. [20,21]). In the
case of an MGK system, the transition from stability to
instability always implies that a system frequency, as func-
tion of a parameter, has reached zero. For an MGKN system,
when two system frequencies have approached each other
and become equal at a non-zero value, they may leave the
imaginary axis and go in opposite directions on the real axis
which is known as a flutter type of instability.

Appendix B. Remaining roots when stationary solutions
exist

The condition for constant solutions o¼0 in Eq. (26a)
is c0¼0, which agrees, of course, with Eq. (19b). In this
case, the two other roots are the solutions of the remain-
ing quadratic equation:

o2þc2oþc1 ¼ 0) o1,2 ¼�ð3�lÞ=27
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�1Þ2=4þl3b2

q
ðB:1Þ

The roots o1,2 are real and are different from each
other for any values {l,m,o2

res}, see Fig. 11. Therefore, in
the present model without damping, the system is stable
if stationary solutions exist.

Appendix C. Envelope of polynomial curves

Here we provide a summary of the formulae needed to
compute the envelope of an implicit function F(T0,b2) that
depends also on a parameter l as applied to Eq. (19b) and
shown in Fig. 5:

FðT0,b2; lÞ ¼ T0þð1�lÞðb
2
�1=l2

Þ ¼ 0 ðC:1Þ

In general, the envelope of a function F is given by the
condition:

F�
@F

@l
¼ 0 ðC:2Þ

When F is a rational function of l, we obtain the
polynomial Fc after clearing the fractions:

FcðT0,b2; lÞ ¼ T0l
2
þð1�lÞðl2b2

�1Þ ¼ 0 ðC:3Þ

The envelope is then given by the requirement that l is
a double root of Fc.

2 In this case, Fc is a cubic polynomial of
the form al3

þbl2
þclþd¼0 and the condition for a

double root3 is

b2c2�4ac3�4db3
�27a2d2

þ18abcd¼ 0 ðC:4Þ

ZðpÞ ¼

Asp2�ðAs�CÞ �ð2As�CÞp �2mh p �mhðp2�1ÞþmF=O2

ð2As�CÞp Asp2þðAs�CÞ mhðp2�1Þ�mF=O2
�2mhp

2mhp mhðp2�1Þ mfo2
resþm1ðp

2�1Þg �2mm1p

�mhðp2�1Þ 2mhp 2mm1p mfo2
resþm1ðp

2�1Þg

2
66664

3
77775) Z ¼Mp2þGpþðKþNÞ ðA:2a;bÞ

2 http://en.wikipedia.org/wiki/Envelope_(mathematics).
3 This condition is better known for a¼1; after elimination

of the quadratic term b¼0 we have (c/3)3
þ(d/2)2

¼0.
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with a¼�b2; b¼T0þb2; c¼1; d¼�1. This leads to the
following cubic polynomial in T0:

T0
3
þð3b2

þ1=4ÞT0
2
þð3b2

þ5Þb2T0þb
2
ðb2
�1Þ2 ¼ 0 ðC:5Þ
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Fig. 11. Roots o1, o2 for 0.5olo1.5 when constant solutions exist.
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