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The paper presents a few valuable and interesting lessons offered by unexpected
dynamical performances of orbiting satellites. Sometimes, the observed dynamical
behaviour appears to be ‘anomalous’, at least to an extent, when it does not conform to
our a priori expectations. Subsequently, considerable effort is often required to properly
understand that the observed behaviour is in fact perfectly natural from a dynamical point
of view. The paper presents four examples from the author's background in the field of
operational satellite flight dynamics. The first three events belong to the field of attitude
dynamics of spin-stabilized satellites and the final case deals with the precise deep-space
trajectory navigation of ESA's Rosetta satellite.
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1. Introduction

John V. Breakwell (1917–1991)

This paper is dedicated to the memory of John V.
Breakwell, whose ideas and enthusiasm inspired a gen-
eration of astrodynamicists. We are grateful to have had
the good fortune to have known him [1–3].

The paper presents four examples of lessons learned
from the in-orbit dynamical behaviour of satellites. The
first three of these events belong to the field of attitude
dynamics of spinning satellites and the last event deals
with deep-space trajectory navigation.

The first event happened in May 1979 when ESA's spin-
stabilized GEOS-1 satellite performed a 45-min orbit
station-keeping manoeuvre [4]. Detailed simulations were
carried out prior to the manoeuvre execution in order to
verify the dynamical behaviour of the satellite's two
flexible cable booms of 20-m lengths. Surprisingly, the
simulation results predicted the complete de-spin within
10 min and, as a consequence, the loss of the satellite due
to slackness of the cable booms. When examining these
results with the help of dynamical models it became clear
that the booms were not responsible for the mysterious
de-spin. It was induced by the rate-coupling in the non-
linear rigid-body Euler equations together with the rela-
tively low spin rate of 11 rpm. Subsequently, two short trial
manoeuvres were performed on the satellite, which con-
firmed that the predicted de-spin was real.

The second event happened on 18th December 1981, a
few days after the launch of ESA's MARECS-A. During its
geostationary transfer-orbit (GTO) phase, MARECS-A was
spin-stabilized at a 65-rpm nominal spin rate. When
checking the solar-aspect-angle measurements generated
by the V-slit Sun sensor, unforeseen jumps in the Sun-
aspect angle measurements of about 0.051 were observed
around the three perigees [5]. No such jumps had been
seen during previous ESA GTO's (e.g., GEOS and METEO-
SAT). Eventually, we confirmed [5,6] that these jumps
were induced by free-molecular flow torques acting dur-
ing the perigee passages.

The next event deals with NASA's CONTOUR satellite,
which was lost during the firing of its solid rocket motor
on 15th August 2002. This motor extended far into the
satellite so that the lever arm of the jet-damping torque
was relatively short. In addition, the variations in the
satellite's mass properties during the rocket burn were
relatively significant. Therefore, there was a suspicion
that the anomaly could have been caused by stability
issues during the burn. A representative practical jet-
damping model was constructed [7]. This was based on
the fundamental hypothesis that the angular momentum
lost by the burning propellant must be equal to the
momentum carried away by the combustion gases
through the nozzle. Also, useful analytical models for
the nutation induced by jet-damping and misalignment
torques were established. Finally, it was confirmed [7]
that the jet-damping torque was not responsible for the
loss of CONTOUR.

The last event is relevant to planetary and comet-
rendezvous missions, which require precise targeting
based on the accurate non-gravitational modelling of
the perturbing forces. Therefore, ESA uses high-fidelity
models for the small forces induced by the solar radiation
pressure acting on the satellite surfaces. Nevertheless,
major discrepancies between the predicted and estimated
forces were observed during the cruise phases of the
Rosetta, Mars Express, and Venus Express satellites.
Originally, these discrepancies were corrected by using
scale factors for the acceleration components along the
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satellite-sun direction. Our analyses [8–14] found that the
anomalies originate from recoil forces induced by ther-
mal radiation re-emitted from the satellite's exterior
surfaces. These forces vary with the surface orientation
and have in general non-zero components away from the
Sun direction.
2. Satellite dynamics lesson

2.1. Background

When ESA's spin-stabilized GEOS-1 satellite (shown in
Fig. 1) had to perform a 45-min north–south orbit station-
keeping manoeuvre in May 1979 there was little ground for
apprehension [4]. A similar (although much shorter) 3-min
manoeuvre had performed smoothly two years earlier.

However, there were two apparent differences at this
time. The two 20-m long radial cable booms had been
deployed and the spin rate had been lowered from 96 to
11 rpm. Therefore, there was some concern about the
dynamical behaviour of the cable booms during the
manoeuvre. Simulations were carried out by means of
the non-linear satellite dynamical model. Surprisingly, the
results predicted a complete de-spin of the satellite (and
loss of the satellite due to the slackness of the cable
booms) after just 7.5 min from the start of the manoeuvre.

When analyzing the simulator results it became
obvious that the booms were not responsible for the
satellite's de-spin. In fact, the rate coupling in the non-
linear rigid-body Euler equations together with the rela-
tively low 11-rpm spin rate caused the potentially cata-
strophic spin-down.
Fig. 1. In-orbit configuration o
Subsequently, two short verification manoeuvres were
commanded to the satellite and the observed reductions in
spin rates were consistent with the simulator's predic-
tions. Boland and Janssens [4] provide a thorough first-
hand narrative of this narrow-escape satellite saga.

The lesson in satellite dynamics recounted here cap-
tured the imagination of the author, who proceeded to
develop an analytical higher-order perturbation model
[15] for the attitude motion of a rigid-body satellite under
a body-fixed torque. This model provides an independent
confirmation of the observed GEOS-1 de-spin. Subse-
quently, it has also been used for the benefit of other
satellites. For example, it was instrumental in establishing
the most favourable configuration for the five mechanical
gyros of the HIPPARCOS satellite. The objective was to
maximize the overlaps in the two fields of view (which
project onto the same focal plane of the on-board tele-
scope) under reaction torques induced by the gyros [16].
Larger overlaps facilitated the subsequent star pattern
recognition operations.

2.2. Dynamical model

For illustration, we present here an approximate
method [4] for analyzing the attitude motion of an asym-
metric spinning rigid body. The thrust force acts parallel to
the spin axis as illustrated in Fig. 2. It generates a constant
torque within the equatorial plane of the body
reference frame.

The rotation rates governing the attitude motion obey
the well-known Euler equations:

A _ω1þ C�Bð Þ ω2 ω3 ¼M1
f ESA's GEOS-1 satellite.
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B _ω2� C�Að Þ ω1 ω3 ¼M2

C _ω3þ B�Að Þ ω1 ω2 ¼ 0 ð1a–cÞ

The dots denote time-derivatives, ωj are the compo-
nents of the rotation vector ω and the subscripts j¼1, 2, 3
refer to the principal x, y, z body axes. The constants A, B, C
are the principal moments of inertia with AoBoC. The
axial force F and lever arm vector r (see Fig. 2) generate the
torque M with components M1 and M2 along the x1, x2
body axes:

M1 ¼ r F sin α; M2 ¼ �r F cos α ð2a;bÞ
We introduce now the inertia coefficients:

k1 ¼ C�Bð Þ=A ; k2 ¼ C�Að Þ=B; k3 ¼ B�Að Þ=C ð3a–cÞ
which satisfy 0okjo1 (j¼1, 2, 3). We write mj¼Mj/Ij with
units of 1/s2 and Ij denoting the moment of inertia about
the xj axis. This allows us to simplify the appearance of
Eq. (1) as follows:

_ω 1þk1 ω3 ω2 ¼m1

_ω 2�k2 ω3 ω1 ¼m2

_ω 3þk3 ω1 ω2 ¼ 0 ð4a–cÞ
2.3. Approximate solutions for rates

Because GEOS-1 is a stable spinner the free-drift nuta-
tion remains small so we may assume that ωj(0)ffi0 (j¼1,
2). Eq. (4c) suggests that, at least initially, the change in
spin rate ω3(t) is also small:

w3 tð Þffiw3 0ð Þ ¼O constantð Þ ð5Þ
Eq. (4a,b) have now been linearized and have the

periodic solutions:

ω1ðtÞffi�a2þa2 cos ðwtÞþb1 sin ðwtÞ
ω2ðtÞffia1�a1 cos ðwtÞþb2 sin ðwtÞ ð6a;bÞ

where w denotes the nutation rate:

w¼ Ω
ffiffiffiffiffiffiffiffiffiffiffi
k1 k2

p
ð7Þ
Fig. 2. Axial thruster executing Δv manoeuvre on a spin-stabilized
satellite like GEOS-1.
and the constants aj and bj stand for:

aj ¼mj=ðkj ΩÞ; bj ¼mj=w ðj¼ 1;2Þ ð8a;bÞ
In order to analyze the spin behaviour we substitute

the periodic equatorial x, y rates of Eq. (6) into Eq. (4c).
Since our focus is on the long-term evolution of the spin
rate we replace the forcing term in Eq. (4c) by its average
value over the nutation period Pnut¼2π/w:

_ω 3 � �k3 ω1ðtÞ ω2ðtÞ
� �¼ � k3

Pnut

Z Pnut

0
fω1ðsÞ ω2ðsÞg ds¼ k3

m1 m2

w2

ð9Þ
From Eq. (2) we find that the result of Eq. (9) will be

non-zero as long as αa0 and αakπ /2 (k¼1, 2,…). In this
case, the spin rate ω3(t) will be varying with time. The
definition of the initial nutation rate in Eq. (7) is based on
the initial spin rate Ω. Subsequently, the definition of the
instantaneous nutation rate in Eq. (7) should be based on
ω3(t) and will thus also be time-varying. After replacing w
by the instantaneous nutation rate in Eq. (9) we obtain the
following equation for the spin rate ω3(t):

_ω 3ðtÞffi
k3 m1 m2

k1 k2 ω2
3

) ω3
3

� �d ¼ 3J M1 M2 ð10a;bÞ

with:

J ¼ B�A
CðC�BÞ ðC�AÞ ð10cÞ

Since all terms on the right-hand-side of Eq. (10b) are
constants we can easily integrate:

ω3ðtÞ ¼Ω 1þt=τ
� �1=3 ð11aÞ

Finally, the constant parameter τ can be expressed in
the torque parameters defined in Eq. (2):

τ¼Ω3= 3J M1 M2ð Þ ¼ �Ω3= 3J r2F2 sin α cos α
� �

ð11bÞ

This expression confirms that a spin-down occurs in
the case when 0oαo901.

The input parameters for GEOS-1 are as follows [4]:

F ¼ 7:0 N; r¼ 0:725 m; α¼ 403

Ω¼ 11 rpm; J ¼ 8:914 � 10�5 kg�2m�4

)

) τ¼ 451 s

ð12a–fÞ
Ref. [4] shows how the contributions of the cable-

booms to the inertias B and C should be included in the
calculation of the parameter J.

Fig. 3 shows the spin rate variations for thrust dura-
tions of up to one hour and initial spin rates between 11
and 60 rpm. When using the GEOS-1 parameters we find
that a complete de-spin of the satellite will happen within
an hour for any initial spin rate that is below 22 rpm.

3. Free-molecular flow lesson

3.1. MARECS-A solar aspect angle measurements

The next example occurred during the geostationary
transfer orbit (GTO) of ESA's MARECS-A satellite in Decem-
ber 1981 following its injection by an Ariane-1 launch



Fig. 3. Spin-rate variations under axial thrust for different initial spin
rates.

Fig. 4. Solar-aspect-angle measurements near MARECS-A 1st Perigee
Passage (20.12.1981).
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vehicle. MARECS-A was spin-stabilized with a spin rate of
about 65 rpm during its GTO-phase.

When filtering the solar aspect angle outputs of the
V-slit Sun sensor, unexpected discontinuities of about
0.051 were observed [5] in the evolution of the solar
aspect angles around all of its three GTO perigees. Fig. 4
shows the measured solar aspect angles near the 1st
perigee. It may be noted that no jumps had been observed
during prior GTO's of ESA's GEOS and METEOSAT satellites.

A detailed study [5,6] reveals that the observed changes
in the MARECS-A solar aspect angles are due to changes in
the spin-axis attitude orientation over the perigee region.
These attitude changes are induced by free-molecular flow
(FMF) torques acting in the perigee region. GTO satellites
launched by Ariane-1 have their perigees at close to
200 km altitude and FMF effects are appreciable during
only about 20 min centred at the perigee.

The solar aspect angles represent the only available
attitude-related measurements in the perigee region. It should
be noted that V-slit Sun sensors can observe only a single
component of the change in spin-axis orientation, namely the
one normal to the Sun cone. (Note that a ‘Sun cone’ has its
centreline in the Sun direction and represents the locus of
attitude vectors with identical solar aspect angle.) If, in
addition, the torque direction is known to good precision, it
becomes feasible to calculate the total change in the spin-axis
attitude from the observed jump in solar aspect angle.

In the case of MARECS-A the torque direction can be
predicted by precisely modelling the free-molecular flow
interactions with the applicable satellite surfaces. In this
manner we found [5] that the FMF torque points in a
direction that is about 111 away from the maximum
possible change in Sun-angle. Since the spin-axis precession
moves in the direction of the applied torque its direction in
inertial space is known. On this basis we can calculate that
the magnitude of the spin-axis attitude change is 1.87%
larger than the observed jumps in solar aspect angles.

3.2. Background of free-molecular flow effects

In the early 1980s Koppenwallner [17] and co-workers
[18] established numerical models for calculating the
forces and torques generated by free-molecular flow
effects on the basis of Maxwell–Boltzmann's kinetic gas
theory. These models have been used for evaluating the
FMF forces and torques acting on ESA satellites like
MARECS-A [19]. Furthermore, wind tunnel tests were
conducted [20] to reproduce the attitude changes of
MARECS-A during its GTO perigee passages.

Around the same time, the author developed detailed
analytical models [5,6] that predict the attitude changes
induced by the free-molecular flow effects for cylindrical
and box-shaped satellites in GTO. When allowing for
typical uncertainties in the air densities, the analytical
results confirm that the MARECS-A attitude changes are
induced by FMF torques acting over the perigee region.

In the analytical model, the momentum interactions
governing the torque's magnitude and direction are
expressed as functions of the orbital eccentric anomaly.
The cumulative torque vector over the perigee region is
obtained by analytical integration with the help of an
asymptotic method. This torque forces the spin-axis orien-
tation precession in the direction normal to the plane
formed by the perigee velocity and the spin-axis orienta-
tion vectors (with both vectors referring to the same
inertial frame).

Of particular interest is the generic expression [5] for
the FMF torque that is valid for a symmetrical satellite
configuration, which incorporates the orbital velocity and
satellite spin-axis vectors. Furthermore, it contains the
environmental parameters such as the local air density
and scale height, the FMF characteristics in terms of the
diffuse and specular reflectivity parameters, the velocities
of the incident and reflected molecules, as well as the
satellite's geometrical configuration parameters.

Obviously, the forces and torques induced by FMF act
predominantly within the perigee region. For a typical
GTO, the 1% threshold level of the maximum perigee
density is reached at the eccentric anomaly values of
E¼77.51. Therefore, the forces and torques induced by
the FMF are practically negligible beyond this 7 min long
interval centred at the perigee. The exponential density
model may thus be expanded in an asymptotic power
series in terms of the eccentric anomaly.



Fig. 5. Illustration of diffuse and specular reflections and definitions of
unit-vectors u, n, t.

J.C. van der Ha / Acta Astronautica 115 (2015) 121–137126
Elliptical GTO's have relatively large values for the
parameter β¼ae/Hp, where a is the semi-major axis, e is
the eccentricity, and Hp is the density scale height at
perigee (for instance, βE539 for MARECS-A). The spin-
axis attitude change over the perigee region will be
formulated in terms of a power series in the small
parameter 1/β¼Hp/(ae) and its geometrical interpretation
will be evaluated.

3.3. Free-molecular force and torque models

3.3.1. Generic force model
The FMF provides the dominant perturbing force acting

on Earth-orbiting spinning satellites below about 600 km
altitude. The density within the Earth's thermosphere is
mainly affected by temperature variations due to the
absorption of extreme solar ultra-violet radiation. These
processes can be monitored on Earth via the F10.7 solar
flux index.

Klinkrad and Fritsche [21] offer a generic aerodynamic
force model that expresses the FMF force F acting on a flat
satellite surface:

F¼ 1
2
ρA v2i C ð13Þ

The local atmospheric density ρ follows by summing the
concentration profiles of the atmospheric constituents (e.g.,
N2, O2, O, He, Ar, H, N). The parameter A refers to the
applicable surface area in m2. The free-stream molecular
incident velocity vi is practically identical to the negative
orbital velocity �v. The non-dimensional vector parameter
C is a function of the satellite's geometrical parameters,
its orientation with respect to the flow, as well as the
accommodation coefficients. In fact, C provides a concise
representation of the familiar drag and lift coefficients.

The calculation of the aerodynamic forces requires the
modelling of the intricate molecular interactions with the
satellite surfaces that are exposed to the flow. This may be
done as in Ref. [6] by introducing accommodation coeffi-
cients but here an alternative approach is followed. We
assume that a fraction of the molecules is reflected
specularly, i.e. an elastic reflection of the molecules with
net momentum transfer in the surface-normal direction
only. The remaining molecules are adsorbed on the surface
and may experience collisions with the surface molecules
before being re-emitted in an arbitrary direction, i.e.
diffusely.

The net force resulting from the diffuse re-emission
acts also normal to the surface. In this case, however, the
momentum transfer generates an additional tangential
force component (if the incidence direction is not normal
to the surface) because of the adsorption of the incident
molecules.

The relationship between the unit-vectors u, n, and t
follows from the geometry shown in Fig. 5:

u¼ cos ϑ nþsin ϑ t ð14Þ
The fraction of incident molecules that is reflected

diffusely is denoted by σd (0≤σd≤1). We assume that the
nature of the re-emission will be in accordance with
Lambert's cosine law as shown in Fig. 5. These molecules
lose almost all of their momentum since they become
accommodated on the surface. Subsequently, they are
emitted diffusely with the most probable velocity vw
predicted by Maxwell–Boltzmann's velocity distribution
associated with the surface temperature Tw. The recoil
force due to the re-emission acts normal to the surface in
the direction of its (inward) normal vector n.

The non-diffusely reflected fraction (1�σd) of the
molecules is reflected specularly. These molecules are not
accommodated on the surface and preserve their incoming
tangential velocity components without any momentum
exchange in the tangential direction.

The velocity components normal to the surface change
their signs during the reflection off the surface. They
produce a recoil force (in the normal direction) of the
same magnitude as the force that was generated by the
incident molecules. Thus, the coefficient C in Eq. (13) may
be split up in diffuse and specular parts:

C¼ σdcdþσscs; with: σs ¼ 1�σd ð15Þ
where the coefficients cd and cs represent the diffuse and
specular momentum interactions with the surface A,
respectively.

Practical free-molecular force models can be derived
from Maxwell–Boltzmann's kinetic theory of gases, see
Koppenwallner [17]. This involves the use of the pressure
and particle flux functions Π and χ. The results for the
coefficients cd and cs may then be expressed in the surface
(or wall) temperature Tw and atmospheric molecular
temperature Tm as follows:

cd ¼
vm
vi

	 
2 ΠðSnÞffiffiffi
π

p þ1
2

ffiffiffiffiffiffiffi
Tw

Tm

s
χðSnÞ

 !
nþ StχðSnÞffiffiffi

π
p

	 

t

( )
ð16aÞ

cs ¼
2ffiffiffi
π

p vm
vi

	 
2

ΠðSnÞn ð16bÞ

with subscripts m¼molecular, i¼ incident, n¼normal,
t¼tangential, w¼wall, and abbreviations:

ΠðSnÞ ¼ Snexpð�S2nÞþ
ffiffiffi
π

p
S2nþ0:5
� �

1þerf ðSnÞ
� � ð17aÞ

χðSnÞ ¼ expð�S2nÞþ
ffiffiffi
π

p
Sn 1þerf ðSnÞ
� � ð17bÞ

Sn ¼ vi=vm
� �

cos ϑ; St ¼ vi=vm
� �

sin ϑ; ð17c–dÞ



Fig. 6. FMF parameters Cn and Ct as functions of ϑ.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tw=Tm
� �q

¼ vw=vm ð17eÞ

3.3.2. Simplified aerodynamic coefficients
When Sn is sufficiently large, Eq. (17a,b) may be

simplified (with errorso10�6 for Sn43.5):

ΠðSnÞffi
ffiffiffi
π

p
2S2nþ1
� �

; χðSnÞffi2
ffiffiffi
π

p
Sn ð18a;bÞ

Although the velocity ratio vi/vm45 for altitudes above
150 km, the validity of the approximate results in Eq. (18)
breaks down when ϑffi901. Fortunately, the surface inci-
dence angle is shallow in this case so that the force is
relatively small and the resulting errors will be immaterial.

The expressions in Eq. (18) enable us to simplify Eq.
(16) as:

cdffi 2 cos 2ϑþ vm
vi

	 
2

þ ffiffiffi
π

p vw
vi

	 

cos ϑ

" #
nþ sin ð2ϑÞ t

ð19aÞ

csffi2 2 cos 2ϑþ vm
vi

	 
2
" #

n ð19bÞ

The aerodynamic coefficient C in Eq. (15) becomes
now:

C¼ ð2�σdÞ 2 cos 2ϑþ vm
vi

	 
2
" #

þσd
ffiffiffi
π

p vw
vi

	 

cos ϑ

( )
n

þ σd sin ð2ϑÞ t ð20aÞ

) C¼ Cn nþCt t ð20bÞ
where the scalar FMF parameters Cn, Ct are defined by:

Cn ¼ c0þc1 cos ϑþc2 cos 2ϑ; Ct ¼ σd sin ð2ϑÞ ð21a;bÞ

and:

c0 ¼ 2�σdð Þ vm
vi

	 
2

; c1 ¼ σd
ffiffiffi
π

p vw
vi

	 

; c2 ¼ 2 2�σdð Þ

ð22a–cÞ

These coefficients may be interpreted physically as
follows: c0 models the normal momentum transfer due
to the thermal speeds of the incident and specularly
reflected molecules; c1 refers to the normal momentum
transfer of molecules that are diffusely re-emitted at sur-
face temperature (after accommodation); c2 denotes the
normal momentum transfer due to the velocities of the
incident and specularly reflected molecules. Finally, the
parameter Ct expresses the transfer of tangential momen-
tum by the incident molecules that are accommodated on
the surface.

Fig. 6 shows the FMF coefficients Cn and Ct as functions
of ϑ for σd in the range from 0.9 to 1.0. Note that σd40.95
at about 200 km [22]. Additional inputs are Tw/Tmffi0.3
and vi/vmffi10. The results of Cn and Ct for σd¼0.9 are at
most 10% different from those for σd¼1. These results
hardly change for different vm/vi ratios because the
parameter c0 in Eq. (22a) is comparatively small since
c2ffi25c1 and c1ffi8c0.

The drag and lift coefficients CD and CL follow from Eqs.
(20)–(22), see also Fig. 5:

CD

CL

 !
¼ cos ϑ sin ϑ

�sin ϑ cos ϑ

 � Cn

Ct

 !
ð23Þ

The magnitude of CL is typically less than 10% of CD.
It follows from Eqs. (13) and (20) that the components

of the FMF force along the normal and tangential direc-
tions (see Fig. 5) may be written as:

F¼ 1
2
ρ v2A Cn nþCt tð Þ ð24Þ

where v is the satellite's orbital velocity, which may be taken
identical to –vi. The coefficients Cn and Ct are defined in Eq.
(21) and the unit-vectors n and t refer to the geometry of
Fig. 5. Eq. (24) is consistent with Ref. [6], Eq. (28), which was
derived by using accommodation coefficients.

3.3.3. Integrated torque result
Reference [23] presents the detailed derivation of the

integrated torque expressions for box-shaped as well as
cylindrical satellite configurations. These represent the
FMF torques contributed by the satellite top and side
surfaces after averaging over a spin period.

The generic result for the spin-averaged FMF torque of
cylindrical and box-shaped satellite configurations is given by:

Mh i ¼ �1
2
ρ z� vð Þ C0v2= z� vj jþC1vþC2 z� vj jþC3 zdvð Þ� � ð25Þ

Table 1 provides the parameters Cj for a box-shaped
satellite like MARECS-A and Fig. 7 defines the geometrical
parameters used in Table 1.

3.4. Calculation of change in spin-axis orientation

3.4.1. Orbit model
The satellite's velocity vector is expressed in terms of

the eccentric anomaly E. Its components in the perigee
reference frame (see Fig. 8) with vertical and horizontal



Fig. 7. Definition of reference axes and parameters.

Fig. 8. Definitions of cone and clock angles λp, μp.
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unit vectors ξp,ηp are:

vðEÞ ¼
ffiffiffiffiffiffiffiffi
μ=a

p
�ð sin EÞ ξpþseð cos EÞ ηp
� �

=ð1�e cos EÞ ð26Þ

where a is the semi-major axis, e is the eccentricity,
se¼√(1�e2), and μ¼3.986�1014 m3/s2 is the Earth's
gravitational parameter. The magnitude of the velocity
vector is given by:

vðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ=a
� �

1þe cos Eð Þ= 1�e cos Eð Þ� �q
ð27Þ

The atmospheric density is adopted from King-Hele's
exponential model [24]:

ρðEÞ ¼ ρpexp �β 1� cos Eð Þ� � ð28Þ

Here, ρp denotes the atmospheric density at the perigee
position rp and the parameter β is defined by:

β¼ ae=Hp ð29Þ
with Hp the density scale height at perigee.

For the MARECS-A GTO parameters of affi2.44�
104 km, effi0.73, Hpffi33 km we find βffi539. The density
decreases rapidly from its maximum value ρp at perigee.
The threshold density level of 1% of ρp occurs at E¼77.51,
which corresponds to an interval of only73.6 min. There-
fore, we may neglect torque contributions beyond this
relatively narrow range of eccentric anomaly.

3.4.2. Change in spin-axis angular momentum
First, we transform the starting spin-axis vector from

its inertial representation z¼(z1, z2, z3)T to its coordinates
(zξ, zη, zζ)T in the perigee reference frame of Fig. 8:

z¼ zξ ξpþzηηpþzζ ζp ð30aÞ

with cone and clock angles λp, μp:

zξ ¼ sin λp cos μp; zη ¼ cos λp; zζ ¼ sin λp sin μp

ð30bÞ
The spin-averaged torque vector of Eq. (25) can be

expressed in the eccentric anomaly by substituting the
velocity and attitude results of Eqs. (26) and (30):

MðEÞ� �¼ �1
2
ρp

μ

a

� � FðEÞ
1�e cos Eð Þ2

se cos E ðz� ηpÞ
�

� sin E ðz� ξpÞ
�

exp �β 1� cos Eð Þ½ � ð31Þ

where F(E) is defined by Eq. (18) of Ref. [5].
The change ΔH in the satellite's angular momentum

vector H¼ Iz ωspin (where Iz is the axial moment of inertia)
follows by integration of Eq. (31) over the perigee region:

ΔH¼
Z tp þ t 1

tp � t 1

MðtÞ� �
dt
Table 1
Parameters Cj (j¼0,…, 3) for a box-shaped satellite.

Parameters in m3 Box-shaped satellite

C0 2ðA1þA2ÞRz c0=π
C1 RzðA1þA2Þ c1=2
C2 4RzðA1þA2ÞðC2þσdÞ=ð3πÞ
C3 ð2A0 R0�A1 Rx�A2 RyÞ σd
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3=μ
� �q Z þE 1

�E 1

MðEÞ� �
1�e cos Eð Þ dE ð32Þ

Since the integration interval is taken symmetric about
the perigee position E¼0, odd functions of E do not
contribute to the integral in Eq. (32) so we write:

ΔH¼ �ρp
ffiffiffiffiffiffi
μa

p ðz� ηpÞ J1ðE1Þ�ðz� ξpÞ J2ðE1Þ
� � ð33Þ

The integrals Jm (E1), m¼1, 2 are defined by:

JmðE1Þ ¼
Z E1

�E1
GmðEÞ exp �β 1� cos Eð Þ½ � dE ð34Þ

where the functions Gm(E) have units of m3 and denote the
surviving even terms in the integrand of Eq. (32), which
are given in explicit forms in Eq. (25) of Ref. [5].

The integrals in Eq. (34) can be simplified by using the
integration variable u¼√(1�cos E) and by expanding
Gm{E(u)} in power series of u. Since the parameter β is
large, the exponential term in Eq. (34) obtains its major
contributions from a small region around the perigee.
Application of the Laplace Method [5] with variable u
and parameter β leads to a compact asymptotic result for
ΔH in Eq. (33):

ΔHffi�ρp

ffiffiffiffiffiffiffiffiffiffiffiffi
2πμa
β

s
γ10ðz� ηpÞ
�



Fig. 9. Normalized torque on a box-shaped satellite.
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þ 1
2β

γ11ðz� ηpÞ�γ21ðz� ξpÞ
� �þO

1
β2

	 
�
ð35Þ

The indices (i.e., m¼1, 2; k¼0, 1) of the coefficients γmk

refer to the functions Gm[E(u)] and to the power of the
asymptotic power series in (1/β)kþ1/2, respectively. The
coefficients for k¼0 are the leading terms of the asymp-
totic expansion in Eq. (35). The γ20 term vanishes and γ10 is
defined by:

γ10 ¼ 1þeð Þ C0= sin λpþC1þC2 sin λpþC3 zη
� � ð36Þ

The second term in Eq. (35) (i.e., the one containing
[…]) is of the order of (1/β)3/2 so that its magnitude is only
about 0.2% of the leading γ10 term for typical GTO condi-
tions. Thus, we may neglect the second term so that only
the γ10 term of Eq. (35) needs to be taken into account.

3.4.3. Change in spin-axis attitude
The coordinates of the spin-axis vector zþ (i.e., after

perigee) in the perigee reference frame follow from ΔH in
Eq. (35) (when assuming that any nutation disturbances
have subsided):

zþ ¼ zþΔzffiðzξþε zζÞξpþzηηpþðzζ�ε zξÞζp ð37aÞ

) Δzffiε sin λp sin μp ξp� cos μp ζp
� � ð37bÞ

with:

ε¼ ΔH
H

ffiγ10 ρp
1
H

ffiffiffiffiffiffiffiffiffiffiffiffi
2πμa
β

s
rad
� � ð38Þ

The magnitude of the attitude change follows from Eq.
(37b):

Δzj j ffi ε ηp � z
�� �� ffiε sin λp ð39Þ

As expected, the angle λp between the velocity vector at
perigee and the original spin-axis attitude plays a signifi-
cant role in the present analysis.

Because of the dominance of the torque vector in the
perigee region, the vectors ΔH and Δz point along the
direction ηp� z as indicated by the leading term in Eq.
(35). Thus, the spin axis z rotates along the cone centred
about the ηp axis with cone angle λp, see Fig. 8. The change
in spin-axis orientation has the magnitude of ε sinλp as
predicted by Eq. (39).

3.5. Discussion of results

Simulations have been performed on the basis of
MARECS-A geometrical configuration, its spin-axis attitude
orientation, and its GTO orbital characteristics [23] to
identify the influences of each of the various input vari-
ables. Fig. 9a shows the FMF torque (normalized by ρ v2) as
function of the angle λp. The MARECS-A input value
λp¼17.41 is highlighted in Fig. 9.

Fig. 10 shows the variations in the spin-axis attitude
changes under different atmospheric density levels (i.e.,
maximum, mean, and minimum conditions) on the basis
of the MSIS empirical model [25]. These results indicate
that the spin-axis attitude changes resulting from this
range of density levels varies by a factor of about 3. It
should be noted that the observed attitude changes of
about 0.051 for MARECS-A are just above the maximum
density levels predicted by the MSIS model.

4. Jet damping lesson

4.1. CONTOUR solid rocket motor firing

CONTOUR (Comet Nucleus Tour) was a mission in
NASA's Discovery Program aiming at imaging and science
investigations of comet nuclei. Its main targets were the
comets Encke, Schwassmann-Wachmann-3, and d'Arrest.
CONTOUR was launched on July 3, 2002, by a Delta-7425
Launcher and injected into an Earth-phasing orbit of 1.75-
day period. During the 6 weeks in these orbits, it was kept
spin-stabilized at nominal spin rates of 20 and 60 rpm. A
large number of orbit and attitude manoeuvres [26,27]
were performed in order to achieve the most favourable
conditions prior to the trajectory injection. CONTOUR's
performance during these phasing orbits was flawless.

On 15th August 2002, CONTOUR was injected into its
heliocentric trajectory to Encke's comet by a STAR-30BP
Solid Rocket Motor (SRM). However, a mishap occurred
near the end of the SRM burn and contact could not be re-
established. Farquhar [28] conveys a detailed first-hand
narrative of this unfortunate satellite saga.

Initially, the jet-damping effect was considered to be
one of the most likely potential causes for the failure.
CONTOUR's SRM extends far into the satellite so that the
lever arm of the jet-damping torque is relatively short.
Furthermore, the relatively large variations in the system
mass properties during the burn raised the concerns about
the attitude pointing stability.

Reference [7] presents the analyses and results of a
detailed investigation evaluating the possibility of an
instability induced by the jet-damping and misalignment
torques. It examines the dynamical processes occurring
within a spinning satellite during the SRM burn.

The equations of motion are derived for a system consist-
ing of the rigid-body satellite plus the gases in the SRM
combustion chamber without presuming a specific gas-flow
model. Instead, Ref. [7] uses the fundamental conservation of
the angular momentum from the SRM's solid propellant to
the combustion gases leaving the system through the SRM



Fig. 11. Inertial and satellite reference frames.

Fig. 10. Attitude changes for different density levels.
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nozzle. Thus, the angular momentum flux from the diminish-
ing inertia of the solid propellant is taken equal to the angular
momentum flux of the gases exiting the nozzle.

The formal derivation [7] uses the theory of a variable-
mass system and arrives naturally at expressions for the
jet-damping and the SRM-thrust misalignment torques.
The formulation employs the mass-flow centre ρe and the
mean exhaust velocity ve. These two variables incorporate
the action of the gases on the system independently of the
flow model. Compact analytical results are derived for the
torque effects on the attitude motion. Piecewise linear
approximations are introduced for modelling the evolu-
tions of the system mass properties during the burn. This
flexible approach is well suited for a realistic description of
the time-varying system parameters. The application of
the proposed model will be illustrated for the specific
CONTOUR conditions during its SRM burn.

4.2. Jet damping and misalignment torques

The main causes affecting the pointing stability of a
spin-stabilized satellite during an SRM burn are misalign-
ment and jet-damping torques. The misalignment torque
is caused by offsets in the direction of the SRM thrust and
in the location of the satellite's centre-of-mass due to
imperfections in the satellite balancing and alignments.
The jet-damping torque originates from the resistance of
the out-flowing SRM gases against a transverse rotation.

Fig. 11 shows the (x, y, z) reference fame, which is fixed
to the rigid part of the satellite and rotates with the
instantaneous rotation vector ω. Reference [7] gives the
detailed derivation of the equations of motion under
misalignment and jet damping torques starting from the
well-established moment equation for a non-inertial vari-
able-mass system. After a substantial effort, the final form
for the Euler equations under the apparent Coriolis and
relative torques can be established as:

I _ωþω�Hþβ ρe � ðω� ρeÞ
� �þβ ρe � ve

� �¼ 0 ð40Þ
This expression describes the satellite's rotational

motion under the effects of the SRM gases represented
by the vectors ρe and ve as illustrated in Fig. 12. If we can
solve the complex gas flow dynamics (coupled to the
motion of the rigid part) to produce the precise evolutions
of ρe and ve as functions of time throughout the burn, Eq.
(40) describes the corresponding exact evolution of the
attitude motion.

For simplicity, we consider a steady flow field so that
both ρe and ve remain constant during the burn. The
corresponding approximate solution for the attitude
motion follows from the compact vector Eq. (40). This
equation will be expressed in its components along the
system's principal axes by expanding the jet-damping
term ρe� (ω� ρe) and misalignment term ρe� β
veffiρe� (�Fthrust)¼�Tthrust (where β denotes the mass
flow parameter �dm/dt):

Ix _ωxþ Iz� Iy
� �

ωyωzþβℓ2ωx ¼ Tx;thrust

Iy _ωy� Iz� Ixð Þ ωxωzþβℓ2ωy ¼ Ty;thrust

Iz _ωzþ Iy� Ix
� �

ωxωy ¼ Tz;thrust ð41a–cÞ

Here, ℓ¼ |ρe| is the effective lever arm of the jet-
damping torque shown in Fig. 12. Both the misalignment
and jet damping torque components are taken to be
constants here. This approximation can be considered
realistic over short intervals of up to a few seconds during
the burn.

Eq. (41) is valid within the body's principal reference
frame. In reality, the thrust vector (which is aligned with
ve) may not coincide with the principal z-axis because of
inertia imbalance effects. Furthermore, there may be
deviations in the thrust direction caused by imperfections
within the SRM and/or due to mounting misalignments
with respect to the satellite centreline. Finally, the lever
arm ρe may not be aligned in the nominal direction due to
offsets in the effective thrust vector relative to the system's
centre of mass as illustrated in Fig. 13.

The pointing error of the SRM thrust vector Fthrust in the
system principal reference frame will be modelled by the
half-cone angle δ and the constant but unknown phase
angle β in Fig. 13. The components of the actual thrust
vector within the principal frame are thus:

Fthrust ¼ Fthrustðsin δ cos β; sin δ sin β; cos δÞT ð42Þ
The pointing error δ consists of several independent

error sources, including a SRM-internal thrust direction



Fig. 13. SRM thrust vector in principal frame.

Fig. 12. Configuration and dynamical properties.
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error, SRM mechanical misalignments, and satellite imbal-
ance effects. The standard deviation of the angle δ is of the
order of 0.11 and its phase angle β is uniformly distributed
over the interval (0, 3601) in CONTOUR's case.

The magnitude of the SRM misalignment torque
depends also on the position of the mass-flow centre ρe
which points to the SRM nozzle exit plane as shown in
Fig. 12. Ideally, this vector would be directed along the
principal z-axis. In reality, however, the vector ρe may be
misaligned in a direction normal to the z-axis so we have
ρe¼ℓ uzþσe as illustrated in Fig. 13. The vector σe refers to
the small offset of the centre of the mass flow (xe, ye)
within the nozzle exit plane. The standard deviation of
CONTOUR's offset ε¼ |σe| is of the order of 1 mm and its
phase angle α is uniformly distributed.

When expanding the force result in Eq. (42) for small
values of δ and the vector ρe for small values of ε we obtain
the following approximate expression for the misalign-
ment torque:

Tthrust ¼ ρe � FthrustffiFthrustðρx; ρy; ρzÞT ð43Þ
where:

ρxffiε sin α�δℓ sin β; ρyffiδℓ cos β�ε cos α;

ρzffiεδ sin ðβ�αÞ ð44Þ
The magnitude of the spin component of the misalign-

ment torque is of second-order smallness. Its expected value
is 0 with standard deviation ½√2εδFthrust Nm. Therefore, the
effect of this torque component on the spin rate can be
considered negligible in practice. In the special case of an axi-
symmetric satellite we find from Eq. (41c) that ωz(t)¼Ω
(constant) throughout the SRM burn. For information, we
mention that CONTOUR's input parameters predict a spin
change of less than 0.1 rpm at the conclusion of the burn.

4.3. Rotational motion under disturbance torques

4.3.1. Solution for rates under jet-damping torque
Here we focus on the effect of the jet-damping torque.

For simplicity, we consider an equivalent axi-symmetric
satellite with I¼(Ixþ Iy)/2 at all times. A perturbation
analysis shows that the qualitative behaviour of the results
remains valid also for a small asymmetry in the moments
of inertia.

We introduce the complex planar rotation rate
w¼ωxþ jωy (with j the imaginary unit) and combine
Eqs. (41a,b):

_wþ dðtÞ� jΩ nðtÞ� �
w¼ 0 ð45Þ

with:

dðtÞ ¼ βðtÞℓ2=IðtÞ; nðtÞ ¼ IzðtÞ=IðtÞ�1 ð46a;bÞ
where d(t) and n(t) denote the jet-damping and nutation-
frequency parameters, respectively, which account for the
variations in the mass properties. Both parameters will be
positive for a spin about the maximum principal axis.

The general solution of Eq. (45) is given by:

wðtÞ ¼w0 exp �DðtÞ� �
exp j Ω NðtÞ� � ð47Þ

with the positive functions D(t) and N(t) defined by:

DðtÞ ¼
Z t

0
dðsÞ ds; NðtÞ ¼

Z t

0
nðsÞ ds ð48a;bÞ

Eq. (47) contains two distinct effects. First, we have the
decrease in nutation angle induced by the jet-damping
torque and modelled by exp{�D(t)}. Secondly, there is the
variation of the nutation frequency due to the time-
varying inertias and represented by exp{jΩN(t)}.

4.3.2. Models for mass properties
The mass properties during the SRM burn vary as func-

tions of time in a complex and poorly known manner.
Consequently, there may be discrepancies of up to a few
per cent between the predicted and actual in-orbit inertias.
Therefore, linear models for the system mass properties may
well be adequate. If more precise knowledge of the evolution
of the mass properties over the burn is available the linear
models presented here may be used with piecewise different
parameters over each successive interval.

The instantaneous mass of the satellite-SRM system
varies considerably during the SRM burn and will be
modelled as a (piecewise) linear function of time:

mðtÞ ¼m0�β t ð49Þ
where m0 is the initial satellite-SRM mass and β¼�dm/dt
is the (positive) mass flow parameter. For simplicity, β is kept
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constant throughout the SRM burn. Again, if a more realistic
mass-flow model is available, we may use a piecewise linear
approach for better precision.

The moments of inertia decrease during the burn and
are expressed by the linear models:

IðtÞ ¼ I0ð1�α tÞ; IzðtÞ ¼ Iz0ð1�γ tÞ ð50a;bÞ
where the coefficients α and γ represent the rates of
decrease of the moments of inertia in units of s�1.

The jet-damping function d(t) and the nutation-
frequency function n(t) of Eq. (46) become now:

dðtÞ ¼ d0=ð1�α tÞ ð51Þ

nðtÞ ¼ n0 1þ α�γIz0=I0
� �

t
� �

=ð1�α tÞ ð52Þ
where d0 equals d(0) and n0¼ Iz0/I0 – 1 is the ratio of the
nutation and spin rates at the start of the burn.

After substituting these models for d(t) and n(t) into Eq.
(48) and integrating over time, we obtain:

DðtÞ ¼ �p ℓn ½1�α t� ð53Þ

NðtÞ ¼ n0t–E tþð1=αÞ ℓn ½1�α t�� � ð54Þ
with the dimensionless parameters p and E defined by:

p¼ d0=α ; E¼ ðIz0=I0Þð1�γ=αÞ ð55a;bÞ
The ratio of the instantaneous nutation frequency to

the spin frequency for a variable-mass system must
account for the continuously varying mass properties
and is defined as (see Janssens [29], Eq. 9):

NðtÞ
t

¼ Ω

Z t

0
nðsÞ ds

� �
1
Ω t

¼ n0–E–
E
α t

ℓn 1�α t½ � ð56Þ

Thus, the nutation-to-spin-frequency ratio N(t)/t
depends on the history of the mass properties from
the start of the burn until time t. Of course, before
and after the burn, the constant rigid-body values
(i.e., n0¼ Iz0 /I0�1; nf¼ Iz f /If�1) should be used.

4.3.3. Evolution of nutation angle
The evolution of the nutation angle θ(t) during the SRM

burn can be expressed in terms of the absolute value of the
complex planar rotation rate |w(t)|¼{ωx

2þωy
2
}1/2 as follows:

θðtÞ ¼ arctan IðtÞ wðtÞ
�� ��=½IzðtÞ Ω�� �

ffiθ0 IðtÞ=I0
� �

IzðtÞ=Iz0
� �

wðtÞ
�� ��= w0j j ð57Þ

Here, the nutation is assumed to remain relatively small.
From Eqs. (47) and (53) we know that |w(t)|¼ |w0| [1–αt]p

so the nutation damping ratio becomes:

θðtÞ=θ0ffirIðtÞ IðtÞ=I0
� �p ¼ rIðtÞj1�α tjp ð58Þ

where the constant exponent p is given in Eq. (55a) and the
inertia ratio rI can be calculated as:

rIðtÞ ¼ IðtÞ=I0
� �

= Iz tð Þ=Iz
� �¼ ð1�α tÞ=ð1�γ tÞ ð59Þ

Eqs. (58) and (59) reveal the nutation-damping prop-
erty of the jet-damping torque. Since I(t)/I0o1 and p 44
1 (e.g., CONTOUR has pffi16) the nutation decreases expo-
nentially. If the moment of inertia I(t) were to decrease at a
slower rate than Iz(t), the ratio rI (t) in Eq. (59) would
increase over time and might perhaps compensate the
declining effect of [I(t)/I0]p. In reality, however, rI (t)o1
(e.g., CONTOUR has rI ffi 0.97) or perhaps slightly above 1.
In any case, it is extremely unlikely that a relatively small
increase in rI (t) might compensate the strong exponential
damping effect of the term [I(t)/I0]p in Eq. (58).

If a piecewise linear approach is selected, the integra-
tion in Eqs. (47) and (48) should be performed with
different parameters over each interval (tn�1, tn), for
n¼1, …, N, with t0¼0 and tN¼tf. By iteration of Eq. (58)
we obtain the resulting nutation angle:

θn=θ0ffirn In=In�1
� �pðnÞ In�1=In�2

� �pðn�1Þ … I1=I0
� �pð1Þ ð60Þ

with exponents p(n)¼p(tn) and ratio rn given by:

rn ¼ rIðtnÞ ¼ In=I0
� �

= Izn=Iz0
� � ð61Þ

As expected, Eqs. (60) and (61) collapse to Eqs. (58) and
(59) in the case when p(n)¼p for all n.

4.4. Solution including misalignment torque

When the constant misalignment torque Tthrust of Eq.
(43) is also included in Eq. (45) we have:

_wþ dðtÞ� jΩ nðtÞ� �
w¼ T=IðtÞ ð62Þ

where T stands for the complex torque parameter (i.e.,
T¼Tthrust,xþ j Tthrust,y).

Fig. 14 indicates that the rates of change of the three
moments of inertia are approximately identical for CON-
TOUR. Therefore, from here onwards, we restrict ourselves
to the special case I � (t) ffi Iz

�
(t). This implies that α I0 ffi γ

Iz0 and leads to n(t) ffi n0 /(1�α t) in Eq. (52) and Effin0 in
Eq. (55b). When substituting I(t) and d(t) from Eqs. (50a)
and (51) we can rewrite Eq. (62) as:

1�a tð Þ _wþ d0� jΩ n0
� �

w¼ T=I0 ð63Þ
The solution w(t) of Eq. (63) with initial condition

w0¼w(t0) can be written as:

wðtÞ ¼ cþðw0–cÞ ½1�α t�p� jq ð64Þ
where p¼d0 /α is the damping parameter and q¼Ω n0 /α is
the frequency parameter. The imaginary constant c is given
by:

c¼ T d0þ j Ω n0ð Þ= I0ðd02þΩ2n0
2Þ

n o
ð65Þ

Eq. (64) shows that the solution w(t) describes a
circular spiral in the complex plane that converges to its
centre at point c, which is associated with the tip-off angle
induced by the misalignment torque.

In practice, the magnitude of the imaginary part q of
the exponent in Eq. (64) is much larger than that of the
real part p (e.g., CONTOUR has q/pffi20). Therefore, we
have Ω n0 ≫ d0 and find the compact approximate result:

cffi j T=ðI0 Ω n0Þ ð66Þ
This result confirms that the phase angle of the tip-off

point is roughly 901 ahead of the phase angle of the
misalignment torque. For illustration, the CONTOUR para-
meters predict a standard deviation of 1.61 for the magni-
tude of the tip-off angle for a 60-rpm spin rate.

If the misalignment torque T is absent, the vector c in
Eq. (66) vanishes and the previous (i.e., jet-damping only)
results in Eqs. (47)–(56) are re-established. The rotation



Fig. 14. System moments of inertia during SRM burn.

Fig. 15. Evolution of centres of mass during SRM burn.
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axis as function of time converges to the origin c¼0
representing a pure spin without nutation. A stable spinner
has usually negligible initial nutation and the jet damping
will reduce this even further. Also, if the satellite spins
about its minor axis the jet-damping effect reduces the
nutation in any case.

In the absence of jet damping (e.g., when considering a
thrust-misalignment torque during a manoeuvre) the
function d(t) as well as the constant α vanish and p, q as
well as Eq. (64) become ill-defined. In this case, Eq. (63)
shows that the solution corresponds to the well-known
motion under a constant body-fixed torque:

wðtÞ ¼ cþðw0–cÞ expðj Ω n0 tÞ ð67Þ
The path of w(t) in the complex plane follows now a

circle centred at the tip-off point c. A visualization of the
motion of the angular momentum and delta-velocity
vectors for this case may be found in Fig. 2 of Ref. [30].

4.5. Discussion of results

4.5.1. Evolution of mass properties
The evolution of the system mass properties, i.e. mass,

moments of inertias, and Centre-of-Mass (CoM) position
(measured from the separation plane, see Fig. 12) have
been derived from a realistic model for the SRM propellant
loss during the SRM burn [7]. The inertias are calculated
with respect to the instantaneous system CoM (i.e., satel-
lite, SRM casing, as well as the remaining propellant). From
Fig. 14 we know that the evolution of the inertias over the
burn starts out close to linear but becomes non-linear near
the end of the burn, especially for the transverse inertias.

Fig. 15 shows the displacement of the CoM of the
satellite-SRM system during the SRM burn. This result
follows by adding the constant mass of the ‘empty’
satellite to the time-varying mass of the SRM motor
consisting of its casing plus propellant. At the start of the
burn, the SRM mass is 10% larger than the satellite mass.
Therefore, the curve of the system CoM roughly bisects
those of the ‘empty’ satellite and the SRM.

We can understand why the burning of SRM propellant
makes the system CoM to first rise and then to fall.
Because the propellant starts burning from the SRM
bottom upwards, the CoM's of both SRM and system rise
initially. After the propellant has burned through the bulge
of the SRM its CoM drops and the satellite mass dominates.
The movement of the (satellite-SRM) system CoM during
the burn leads to a time-dependent behaviour of the jet-
damping lever arm ℓ. Its total variation is about 4.6 cm,
which is about 5% of its mean value of 1.087 m.
4.5.2. Effect of jet damping
First, we consider the most straightforward jet damp-

ing model, i.e. the one based on representative mean
values for the relevant parameters throughout the SRM
burn:

β¼ 9:186 kg=s; a¼ 2:26� 10�3 s�1; y¼ 1:72� 10�3 s�1

ð68a–cÞ

n0 ¼ 0:1747; p¼ 15:94; q¼ 1:097 ð68d–fÞ

The inertia ratio rI (t) varies between 1.0 at the start and
rI (tf) ffi 0.9701 at the end of the burn with tf¼50.5 s. The
final nutation damping can be calculated from Eq. (58):

θ tf
� �

=θ0 ¼ 0:1405 ð69Þ

Thus, the jet-damping torque reduces the initial nutation
by as much as 85.95% at the end of the burn.

Subsequently, we employ the more accurate piecewise
linear model in which all parameters are updated at the
end of each interval. The 50.5-s SRM burn is divided into
50 intervals of 1 s and the last one of 0.5 s. Fig. 16 shows
the corresponding evolutions of the burn rate and the jet
damping parameters during the SRM burn. The exponent p
shows considerable variations as function of time. These
are mainly due to the unsteadiness in the rate of change of
the transverse moment of inertia (i.e., α in Eq. (50a), see
also Fig. 14). Variations in the mass flow and in the centre
of mass movement are less significant.

Fig. 17 shows the evolution of the jet-damping function
d(t) and the nutation angle ratio during the SRM burn. The
nutation is reduced by as much as 86.49% at the end of the
burn. The difference with the result of the preceding
straightforward model is only about 0.5%. Therefore, we



Fig. 17. Effect of jet damping on evolution of nutation angle.
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conclude that the damping effectiveness is not at all
sensitive to the specific CONTOUR model characteristics.

5. Deep-space navigation lesson

5.1. Background and motivation

ESA uses high-fidelity models for predicting the solar
radiation pressure (SRP) forces acting on deep-space satel-
lites. However, significant discrepancies of between 5 and
15% (occasionally even higher) have been observed between
estimated and predicted accelerations during the cruise
phases of Rosetta, Mars Express, and Venus Express. These
discrepancies may be reduced by adding a to-be-estimated
SRP scale factor in the satellite-sun direction. While this
improves the precision of the main SRP force component, it
cannot repair a fundamentally flawed force model in both
magnitude and direction.

Our work [8–14] has shown that the shortcomings in
the SRP modelling can be attributed to forces originating
from the thermal radiation re-emitted by the satellite's
exterior surfaces. In the special case when the accelera-
tions due to thermal radiation happen to be aligned with
those induced by the SRP effects, the SRP scale factors may
indeed account for these thermal effects. In general,
however, scale factors cannot properly represent the
thermally induced acceleration in both magnitude and
direction. The replacement of the artificial SRP scale factor
by a realistic thermal model enhances the correspondence
between the force model and the physical reality. As a
consequence, the residuals of the orbit estimation process
become smaller in magnitude and look healthier.

5.2. Accelerations induced by thermal radiation

5.2.1. Attitude pointing and control
Fig. 18 shows the Rosetta satellite and its body refer-

ence axes. The þX axis points normal to the surface on
which the high-gain antenna (HGA) is mounted. The two
solar arrays, each having a size of 32.3 m2, will be
extended along the þY and �Y axes.

Rosetta's attitude is three-axis stabilized during its
cruise phases. The attitude control keeps the Sun vector
within the first quadrant of the X, Z plane (see Fig. 18) to
Fig. 16. Evolution of jet-damping parameters during SRM burn.
within a maximum deviation angle of 11 relative to this
plane. Thus, the �X, �Z surfaces are always in shadow
and the 7Y surfaces barely see the Sun. The arrays rotate
about the 7Y axes and remain oriented normal to the Sun
vector for maximum power generation.

The Sun is the only external thermal radiation source
and Rosetta's inertial pointing direction during its cruise
phases changes very gradually. Therefore, the tempera-
tures of the exterior surfaces stay essentially constant over
a number of days so we may calculate the temperatures
from a steady-state heat balance [8].
5.2.2. Heat balance and acceleration due to solar arrays
The incident solar heat flux qin (in W/m2) that is

absorbed by the front side of the solar array is [8]:

qin ¼ αf
S

d 2 cos ϑ ð70Þ

where αf denotes the absorptivity of the array surface, S is
the mean Solar Constant of 1366.1 W/m2 at the satellite's
solar distance d¼1 Astronomical Unit (AU) from the Sun,
and ϑ is the solar incidence angle (nominally, ϑffi0).

The heat or energy flux qout that is emitted by a surface
at temperature T and emissivity ε is predicted by Stefan–
Boltzmann law as:

qout ¼ σ ε T4 ð71Þ
where σ denotes the Stefan–Boltzmann constant and T is
expressed in units of K.

Fig. 19 shows the heat balance of the incident and re-
emitted heat on the front (f) and rear (r) of the solar
arrays:

qin ¼ qf ;outþ qr;out ð72Þ

The re-emitted heat fluxes can be expressed in their
respective temperatures Tf and Tr similarly as done in Eq.
(71). These temperatures may be calculated [8] from the
solar array heat balance and the known conductivity of the
honeycomb-aluminium array structure by means of a
numerical iteration technique.

The net acceleration in m/s2 induced by the Lambert-
type diffuse thermal emissions from the front and rear



Fig. 18. Rosetta body X, Y, Z reference frame.
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solar array (SA) surfaces (see Fig. 19) is given by [8]:

aTRP; SA ¼ �2
3
σ

c
ASA

m
εf T

4
f �εr T

4
r

� �
SA
n ð73Þ

where TRP stands for ‘Thermal Radiation Pressure’, ASA is
the surface area of the solar arrays, m is the satellite mass,
c is the speed of light, and εf and εr are the emissivity
coefficients of the front and rear solar array panels.

5.2.3. Heat balance and acceleration due to body surfaces
We assume that each external body surface element is

perfectly insulated from other external surfaces as illu-
strated in Fig. 20. Heat balances may then be formulated
for each surface element individually. The energy transfers
through the Multi-Layer Isolation (MLI) between cold
space and the satellite's interior have been analyzed in
detail [9].

The heat balance of the sunlit þX surface may be
expressed as:

qþX; in ¼ αMLI
S

d2
cos ϑ� qþX;out ð74Þ

where αMLI is the absorptivity of the outer MLI sheet.
The exterior temperature TþX follows again from Stefan–
Boltzmann law as in Eq. (71) but is now based on the
emissivity εMLI. For the solar distance d¼1 AU and inci-
dence angle ϑ¼01 we obtain [9] TþX¼129 1C.

The temperature of the shadowed �X surface can be
calculated [9] from the expected 5 W/m2 heat transfer
from the warm satellite interior at about 20 1C through the
MLI sheets into cold deep space at 3 K. Its value at the solar
distance 1 AU can be calculated to be T-X¼�172 1C.
Fig. 19. Heat balance and TRP acceleration on an arbitrary surface Aj.
The acceleration in m/s2 resulting from the thermal
emissions by the þX and �X surfaces can be calculated
similarly as was done for the solar arrays in Eq. (73):

aTRP;X ¼ �2
3
σ

c
AX

m
εMLI T4

þX�T4
�X

� �
X ð75Þ

where X is the unit-vector along the þX axis. Similar
results can be found for the þZ and �Z surfaces with
incidence angle ϑ¼901. The temperature difference for the
body surfaces, i.e. TþX�T-Xffi300 1C, which is 20 times
larger than Tf�Trffi15 1C for the solar arrays (all evaluated
at 1 AU solar distance). As a consequence, the body's
thermal acceleration is in fact slightly larger than the
acceleration induced by the much larger arrays [8,9].

Precise high-fidelity analytical SRP and TRP models
have been established by Kato et al. [10,11]. These models
account for the actual in-flight pointing history (expressed
in elevation and azimuth angles) of Rosetta's High-Gain
Antenna (HGA) during the cruise phases. The HGA's con-
tributions to the SRP and TRP accelerations are of the order
of 3% to 5%.

Further enhancements in the level of geometric preci-
sion and overall modelling fidelity may be achieved by
using a numerical technique similar to the finite-element
method [12]. This approach uses detailed discretisations of
the satellite surfaces. By computing the effects for each
individual surface element, the resulting forces and tor-
ques acting on the satellite can be modelled very precisely.
The achievable accuracy is limited only by the discretiza-
tion mesh size and by the computing power.
5.3. Sample of results for Rosetta

The thermal-model predictions of the non-gravitational
forces have been compared with the observed ones
derived from ESOC's state estimates [13], see Fig. 21. The
blue line represents the percentage error of the predictions
when the SRP is taken as the sole non-gravitational force.
The green line shows the percentage error when both SRP
and TRP forces are considered. The significant improve-
ment can easily be observed.

Similar results are obtained for the later Rosetta cruise
phases and also for the Mars Express and Venus Express
cruise phases. Overall, the SRP plus thermal models account
for 97 to 99% of the observed non-gravitational accelerations.
Fig. 20. Configuration of satellite body surfaces [9].



Fig. 22. Comparison of solar-array temperatures for Rosetta [13].

Fig. 23. Comparison of predicted and measured solar array temperatures
for Venus Express [14].

Fig. 21. Errors in modelling of non-gravitational forces [13].
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Fig. 22 shows the comparisons of the solar-array
temperature predictions from our straightforward model
with those obtained by a finite-element method and with
actual thermistor telemetry readings from the solar array.
5.4. Venus Express temperature comparisons

Venus Express (VEX) has thermistors on the rear of its
solar arrays. Their temperature readings have been com-
pared with our predictions for the rear of the solar arrays.
The two data sets showed systematic offsets of between 8
and 16 1C. These discrepancies are due to the fact that part
of the power generated by the arrays is used for on-board
consumption. Therefore, it makes sense to exclude the
converted power from the initial heat input qin when
predicting the array temperatures during the simulations.
Fortunately, reliable data on the level of converted power
are provided in the telemetry.

Another issue is the fact that the efficiency of the solar-
cells decreases with higher temperatures (and this dom-
inates the degradation due to aging effects for VEX).
Therefore, a linear model [14] was constructed for model-
ling the cell efficiency as a function of solar distance
between 1.0 and 0.7 AU.
Fig. 23 shows the comparison of the measured and
predicted temperatures with adjustments for the power
conversion effect and for the degradation of the solar cell
efficiency. The efficiency at 0.7 AU is taken as 95% of the
one at 1 AU. The red and blue lines represent the adjusted
temperatures whereas the dashed lines are those without
adjustments. The continuous blue curve shows excellent
agreements with the blue and red circular markers, which
represent the actual in-flight temperature readings for
each of the two solar arrays.
6. Conclusion

The paper presents interesting and valuable insights
offered by unexpected flight-dynamical performances of
orbiting satellites. These lessons demonstrate that the
evaluation of in-flight performances offers unique oppor-
tunities for enhancing our understanding of satellite
dynamics for operational as well as educational benefits.
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