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Long-Term Evolution of Near-Geostationary Orbits

Jozef C. Van der Ha*
European Space Operations Center, Darmstadt, Federal Republic of Germany

A model for the long-term evolution of free-drifting near-geostationary satellite orbits is presented. A first-
order analytical averaging transformation is applied to the perturbation equations in order to eliminate the
short-term (with period of order of one day) variations of the orbital elements. The model includes lunisolar
gravitational forces up to the second parallactic term of the moon, zonal and tesseral harmonics of the Earth's
potential field up to the fourth degree, as well as the solar radiation force. The algebraic computations have been
carried out by an automated Poisson series manipulation. Extremely compact expressions could be established
after manually recombining the computer-generated results in terms of a few well-selected parameters. The
results obtained are of particular interest for predicting the motion of geostationary spacecraft after their useful
lifetime has expired and stationkeeping maneuvers are no longer executed. The validity of the model presented
has been evaluated by a comparison with numerical results obtained for the European Space Agency's GEOS-2
satellite, which is at present orbiting about 260 km above geostationary altitude.
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Nomenclature
= semimajor axis

coefficients defined in Eqs. (16)
effective illuminated satellite area
= inclination matrix, Eq. (14)
= elements of matrix [ A ] , Eq. (14)
= auxiliary parameter, (1 + a) ~1/2

= auxiliary parameters, Eqs. (17)
= auxiliary functions, Eqs. (31)
= eccentricity vector
= nonsingular eccentricity elements, Eqs. (1)
= auxiliary function, Eq. (48)
= Kaula's inclination functions (Ref. 16)
= nonsingular inclination elements, Eqs. (1)
= nonsingular inclination functions, Eqs. (32)
= inclination
= zonal harmonic coefficients
= tesseral harmonic coefficients
= true longitude, co + Q + 0
= mass of satellite
= mean anomaly
= mean orbital rate
= Earth's rotation rate, 7.292116X 10~5 rad/s
= reference rotation rate, Eq. (46)
= parallactic factor, Eqs. (11)
=yth Legendre polynomial
= associated Legendre functions of first kind
= radial position vector of satellite
= reference geostationary altitude, 42164.2 km
= general disturbing function
= Earth's equatorial radius, 6378.14 km
= solar radiation pressure, 4.51 x 10~6 Pa
= time
= unit vector from Earth to satellite with com-

ponents Uj
= unit vector from Earth to third body with com-

ponents Uj
- Fourier coefficients of w, Eqs. (13)
= auxiliary parameter, 1 + h2 + k2
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Subscripts
S
SR
tess
zon
0
Superscripts

= right ascension
= auxiliary tesseral angular coefficients, Eqs. (30)
and (A2)

= geographical latitude
= third-body perturbation parameter, Eqs. (11)
= zonal perturbation parameters, Eqs. (24)
= tesseral pertubation parameters, Table 1
= solar radiation perturbation parameter, Eq.

(38)
= true anomaly
= geographical longitude
= mean longitude, Eq. (2)
= tesseral angular coefficients, Table 1
= Earth's gravitational parameter,

3.98601 Xl01 4xl01 4m3 /s2

= auxiliary parameter, u-u'
- normalized semimajor axis deviation, Eq. (4)
= reflectivity parameter in solar radiation model
= argument of latitude, u + 6
= drift angle, Eq. (6)
= auxiliary drift angle, Eq. (5)
= argument of perigee
= right ascension of ascending node
= secular part of function enclosed

= nominal (i.e., on-station or reference) values
= solar radiation
= tesseral
= zonal
= initial conditions
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= third body
= derivative with respect to time

Introduction

T HE evolution of a geostationary orbit has been of great
interest over the past 20 years and at present its behavior

is well known. The Earth's oblateness together with the
lunisolar gravitational attraction cause the orbit pole to
precess along a full angle cone of about 14.6 deg over a period
of some 52 years. A qualitative explanation of this preces-
sional motion can be found in Alien and Cook.1

A second important feature of the free-drift orbit evolution
is the periodic longitude drift motion coupled with semimajor
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axis oscillations. These long-period effects (with a period of
more than two years) are caused by the ellipticity of the
Earth's equator. Although the maximum variation in the
equator's cross section is less than 100 m, this effect is capable
of inducing longitude oscillations up to 180 deg amplitude for
the right initial satellite position. In that case, the correspon-
ding semimajor axis oscillation reaches a maximum value of
about 33 km. These effects are described in detail by Alien2

and Blitzer,3 for instance.
The third characteristic of the long-term free-drift motion

refers to the eccentricity vector behavior. For present-day
communications satellites with an area/mass ratio in the order
of 0.02 m2 /kg, the main perturbing effect is provided by solar
radiation forces, with the moon's parallactic influence as a
secondary effect. The resulting motion of the eccentricity vec-
tor consists of circular loops of one-year duration with curly
waves due to the moon's effect superimposed on it.

Approximate analytical theories describing the long-term
geostationary orbit evolution have been developed by, for in-
stance, Flury,4 Graf,5 and Richardson.6 Other theories (e.g.,
Kamel7) are valid particularly for station-kept satellites with
the property that deviations from the reference position are
small. An outline of stationkeeping strategies and the opera-
tional aspects of geostationary satellite support is given by
Soop.8

Recently, interest in the long-term geostationary orbit
evolution has been spawned by the enormous expansion in the
geostationary satellite services required. Problems related to
the overfilling (such as collision risks) of the geostationary
ring will become more and more serious in the near future.9

Therefore, strong recommendations are being made for the
deorbiting of satellites after their useful lifetime has expired.
An account of the deorbiting strategy and operations at the
time of the European Space Agency's (ESA) GEOS-2 orbit
raising can be found in the literature.10

The present paper aims at providing a complete model for
the long-term free-drift evolution of a near-geostationary or-
bit. A first-order analytical averaging transformation is im-
plemented that results in a saving in numerical calculation
time by a factor of 20. By means of an automated Poisson
series manipulator,11 it is possible to construct the secular con-
tributions of the various disturbing functions in a relatively
reliable and quick manner. It is striking that extremely com-
pact expressions for the secular part of the lunisolar perturba-
tions can be established after a manual recombination of the
computer-generated results. Zonal and tesseral gravitational
harmonics of the Earth are included up to the fourth degree
and analyzed as to their secular contributions. Solar radiation
forces are modeled by means of constant material parameters.

The theory presented has been used in the assessment of col-
lision probabilities by predicting the long-term motion of
abandoned geostationary satellites. The model is also useful in
orbit predictions for satellites after their removal from geosta-
tionary orbit. The results have been compared with those from
a numerical theory that includes all of the short-periodic per-
turbations using the orbit elements of ESA's GEOS-2 satellite.
This spacecraft was injected into an orbit about 260 km above
the geostationary altitude in early 1984.10

Equations of Perturbed Motion
Nonsingular Elements

A near-geostationary orbit is characterized by near-zero ec-
centricity and near-zero inclination. In order to avoid the
singularities in the rates of change of the lines of apsides (for
e = Q) and nodes (for / = 0), a set of nonsingular equinoctial
elements12 is adopted, as follows

(1)

From Fig. 1, it can be seen that/and g represent the broken-
angle projections of the eccentricity vector e (pointing to the
instantaneous perigee position) upon the equatorial X and Y
axes, which are taken to be inertial. The elements h and k are
related to the projections of the orbit's polar vector (along the
instantaneous orbit angular momentum vector) upon the same
axes. The mean longitude A will be employed as the
corresponding fast angular variable,

(2)

representing the broken-angle "mean position" of the satellite
relative to the X axis.

The perturbation equations for the chosen set of orbital
elements (f,g,h,k,Ata) can be derived from the familiar
results for the classical orbital elements, for instance, by ap-
plication of CampbelFs formula,13

/=—S-rRg-~r-na2 8 2na2s

8=-na*

hX X2

kX X2

2nd1

a=———*A (3)

where derivatives of the disturbing function R with respect to
the adopted elements are indicated by subscripts, e.g.,
Rf = dR/df.

Since the relative semimajor axis variations turn out to be
small, it is useful to introduce the normalized deviation

third
body

equator plane

Greenwich
of nodes

z = tan(//2)cosQ, /: = tan(//2)sinQ

equinox

Fig. 1 Orbit geometry for near-geostationary satellite.



MAY-JUNE 1986 LONG-TERM EVOLUTION OF NEAR-GEOSTATIONARY ORBITS 365

relative to a constant reference radius rs,

o=(a-rs)/rs

k=(ca/4)X{2k(gRf-fRg-R^+XRh}

(4)

To keep track of the drift angle itself, one may write

As a reference radius, the unperturbed approximation of the
geostationary altitude, i.e., rs = ̂ /nsYA =42164.2 km. It
should be recalled that the Earth's oblateness introduces an
extra gravitational pull on an equatorial orbit, so that the ac-
tual geostationary altitude and semimajor axis are higher than
rs-

It is convenient to write the mean longitude's rate of change
as n + \l/ with \l/ as a slow variable whose rate of change is
defined by the equation for A in Eq. (3). The drift rate x
relative to the Earth's rotation rate can be expressed as

(5)

(6)

with rj = cl — 1. The equation for r) can be considered as an ex-
tension of the system of perturbation equations in Eq. (3).

First-Order Averaged Equations
The disturbing function R for the relevant perturbing forces

must be expressed in the selected nonsingular elements. It will
take the form of a Poisson series with A as the angular fast
variable appearing only within the arguments of sine and
cosine terms. After substituting the derivatives of R in Eqs.
(3), the short-periodic terms (2?r periodic in A) can be
eliminated by applying a near-identity transformation from
instantaneous osculating to mean elements. The system of
equations for the mean elements is obtained by averaging the
right-hand sides of Eqs. (3) over one revolution of A. Par-
ticular care must be exercised in the analysis of the tesserral
harmonics of the geopotential where a close synchronism (i.e.,
near resonance) exists between the satellite's mean angular
rate and the Earth's rotation rate. This implies that also the
Greenwich hour angle (nst + const) must be treated as a fast
variable. In the present model, this will be accomplished by ex-
pressing it in terms of (A — x ) by means of Eqs. (5) before ap-
plication of the averaging operation.

It is evident that, for nonresonance perturbations, all terms
R^ in Eqs. (3) will vanish after averaging because A occurs
only in trigonometric arguments. For the same reason, one
can replace the derivative RA in Eqs. (3) by R^ or Rx [cf., Eqs.
(5) and (6)] in the case of resonance perturbations. These
observations allow us to perform the averaging on the disturb-
ing function itself before evaluating its derivatives with respect
to the elements.

A final simplification is introduced by taking advantage of
the fact that the eccentricity is small (at most of order 10~3) so
that terms of order e2 may be neglected. Since the inclination
of an uncontrolled geostationary orbit grows up to about 15
deg, the inclination will be carried along in an exact manner.
For orbits sufficiently close to geostationary altitude, it would
be legitimate to use a linear expansion of ca for small o. In
general, however, the exact form should be used.

The new disturbing function R is defined as

R = 86400<#>/(>vi) =6.664575 X 1Q-7<J?> (7)

in units of radians per day; </?> refers to the secular part (after
averaging over A) of the original R in Eqs. (3). The system of
averaged equations derived from Eqs. (3) is now as follows:

f=-(ca/2)[2Rg+fRt+gX(hRh+kRk)}

(8)

The independent variable time is now counted in days rather
than seconds. Because of the differentiations in Eqs. (8), it is
necessary to develop the disturbing function R up to second-
order eccentricity terms.

Averaged Disturbing Functions
The averaged expressions for the disturbing functions cor-

responding to the relevant near-geostationary perturbing
forces will be developed successively.

Lunisolar Perturbations
The lunisolar perturbing force originates from the differen-

tial gravitational attraction of the satellite and the Earth by the
respective third body. The disturbing function may be ex-
pressed as (cf., Fig. 1)

R'=n'{\/\rr-r\-(r-r')/(r')3] (9)

After expansion of this expression in terms of powers of
(r/r')9 the effective averaged disturbing function for a near-
geostationary orbit may be written in the form

7=2

where

e'=86400/*

(10)

O2 ]= 4.69673 xlO-5rad/day (sun)

= 1.02272X 10~4 rad/day (moon)

p' =rs/a' =2.81850x 10~4 (sun)

= 0.109689 (moon) (11)

The so-called parallactic term/?' for the sun will be neglected,
but up to second-order parallactic terms for the moon will be
taken into account.

The satellite's mean longitude A is contained in the terms
r/a and in Py through u. By means of automated Poisson
series manipulations based on the transformation from true
anomaly to mean longitude, one can establish the following
Fourier expansions:

(12)
with

I/* = (A ] ( 1 - (9/ + 7g2)/8, -fg/4 } T

u 2 = ( A ] ( f f - g ) T

ul=[A](9(J2-g2)/S9-9fg/4}T

nj= [A] { -

= (ca/4)X[2h(gRf-fRg-R^-XRk} u] = [ A ] { 9fg/49 9(f2 -
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and the "inclination matrix"

S\ J jT\ J

A2c A2s

A* A,

X-2k2 2hk

2hk X-2h2

-2k 2h

(14)

In fact, these expressions can be readily carried to higher order
in/and g, but only up to second-order terms are needed here.

Subsequently, the terms (r/a)j fory = 2,3,4 are expressed in
their Poisson series development in terms of A. These will be
needed for calculating the products of (r/a)j with the Legen-
dre polynomials P / (£ ' ) for y-2,3,4. In explicit form, one
may write these products as

j,k=\
3

[bjkuju'k]

')=-——- £ (bjkuju'k\
8 2 j,k=\

(15)

The coefficients appearing here consist of products of (r/a)j

and inertial components of the vector u

bjk = 3/2(r/a)2ujuk

cjkf = 5 /2 (r/a )3UjUkue

(/=U,3)

(/,* = 1,2,3)

(/,*,*= 1,2,3)

(j,k,t,m = 1,2,3) (16)

It may be noted that these four entries contain 3, 9, 27, and 81
terms, respectively, of which 3, 6, 10, and 15 are different.
These terms have been evaluated by automated Poisson series
multiplications up to second-order eccentricity terms. Since
here the attention is focused on obtaining the average of the
disturbing function, only the secular (i.e., nonharmonic) parts
of Eqs. (15) are of interest. It is remarkable that the lengthy
computer-generated secular terms can be rearranged in ex-
tremely compact forms when introducing the parameters

3 3

£ (Ajcuj), S= X)
y = i 7=1

(17)

These parameters are of a hybrid nature, i.e., they contain the
elements h and k belonging to the satellite orbit as well as the
unit vector components uj of the third body. The final result
for the secular part contained in the main term (j = 2) of the
disturbing function becomes

< (r/a)2P2 •({ ' ) > = - VL + 3/4 (C2 + S2)

- Ue2 + 3 (fC+gS)2 - 3/4 (fS-gC)2 + 0(e4) (18)

The first parallactic term (y-3) contains the secular part

<(r/a)3P3(%')>

(19)
Similarly, the second parallactic term (/ = 4) possesses the
secular contribution

<(r/0)4P4(£')>=3/8-(15/8)(C2 + S2)

where the e2 terms have been neglected, since they would be of
a similar order as e3 terms in the moon's main term due to the
multiplication by the factor ( p ' ) 2 . It is of interest to note that
the contribution of all djMm terms of Eqs. (15) is incorporated
in the ( C2 + S2)2 term obtained after recombination of 66
separate terms in the computer-generated results.

After substitution of Eqs. (18-20) into the disturbing func-
tion of Eq. (10), the derivatives with respect ot the elements as
needed in Eq. (8) can readily be evaluated.14 It is important to
note that during all averaging operations the slowly varying
third-body parameters are considered to be independent of A.
In particular, this means that the moon's motion of about 13
deg per day is replaced by a representative constant position
for each satellite revolution.

The sun's and moon's ephemeris enter the disturbing func-
tion via £ ' and (a' Ir' V, cf. Eq. (10). An analytical ephemeris
has been constructed with the objective of providing at least
three accurate digits in all third-body positions over a 20 year
interval. The moon's apsidal (8.85 year period) and nodal
(18.6 year period) precession rates are incorporated in the
model by a linear function of time. The reference ephemeris
values for the third-body elements and rates are evaluated at
the midpoint of the interval considered. The inertial reference
frame to which all satellite and third-body position vectors are
referred corresponds to the mean equinox-of-date frame at
this reference time. The precession of the equinoxes (26,000
year period) leads to a discrepancy between the adopted and
actual mean equinox-of-date frames of about 0.13 deg at the
extremes of a 20 year period.

Gravity Field Zonal Harmonics
Because of the Earth's nonspherical mass distribution, its

potential field contains perturbing terms that are usually
classified as zonal harmonics (axisymmetric contributions)
and tesseral harmonics (longitude-dependent terms).

The zonal harmonics form a conservative potential field and
are described by the disturbing function,

(21)R™ = - (7-) £ j/n (~-) "Pn (sin6)]

For a near-geostationary orbit, one obtains in units of
radians/day,

71 = 2

where
€„ = 86400 ns(RE/rs)»Jn

On the basis of GEM 8 constants,15 one finds

€2 = 1. 560798 x lO~ 4

e3=-5.53xlO-8 , e 4=-5.3xlO- 9

(22)

(23)

(24)

Still higher coefficients are neglected in the present model. The
secular part of the zonal disturbing function in Eq. (22) is
evaluated by automated Poisson series multiplication of terms
(a/r)n+l with Pn(u3) using the series of r and u as functions
of the mean longitude,

- K2(l + 3e2/2)(l-6/X+6/X2) + 0(

= 3(fk-gh)(l-5/X+5/X2)/X+a(e3)

+ (105/64) (C2 + S2)2 (20) = (3/8)(l + 5e2)(l - 2WX+ 90/X2 - 140/X3 + 70/x4) (25)
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where terms of order e4e2i2 are neglected since they are of
similar magnitude as the €3 e2 terms. The derivatives of the
disturbing function can be constructed without difficulty. 14

It may be recalled that the principal effect of the zonal har-
monics on a near-geostationary orbit consists of the precession
and regression of the lines of apsides and nodes, respectively,
with periods of about 74 and 37 years. Also, the drift rate is
affected by the euqatorial bulge.

Gravity Field Tesseral Harmonics
The longitude-dependent or tesseral harmonics of the

Earth's potential field induce a change in orbital energy with a
rate depending on the satellite's longitudinal position. These
energy changes are connected to variations in semimajor axis
and mean motion that may lead to substantial drifts in the
satellite's longitudinal position relative to the Earth.

The tesseral disturbing function is given by:

(26)
In the near-geostationary form the averaged disturbing func-
tion in units of radians/day can be expressed as

&
where

(27)

(28)

Table 1 summaries the tesseral coefficients based on GEM 8
values.15 Higher terms are of smaller magnitude and are ig-
nored here.

The evaluation of the secular contribution of Eq. (27) is
based on Kaula's approach,16 which leads to the identity

P-.Q °?S }((e-2p)L-mA+l3tmp]sin J

for («-«)-[ 6V?H
n] (29)C odd J

The phase angle ftmp (cf . Fig. 2) is defined as

(30)

It must be recognized that the argument of the trigonometric
function in Eq. (29) contains two fast variables, namely L and
A, whereas P^ is a slow variable. In order to lump all fast-
varying terms in Eqs. (27) together, one introduces the aux-
iliary functions

Table 1 Summary of X^ and e^ based on GEM 8

m X^, deg

2
3
3
3
4
,4
4
4

2
1
2
3
1
2
3
4

- 14.91
7.00

- 17.39
21.06

-138.60
31.22
-3.76
30.67

0.2611
0.0482
0.0081
0.004$
0.0022
0.0006
0.0002
0.0000

orbit

Greenwich
vernal line meridian
equinox of nodes

Fig. 2 Geometry of geographical latitude 5 and longitude X.

With these definitions, one can finally express the secular
part of Eq. (29) symbolically as

<»>«- '—)-
The secular parts of, the functions defined in Eqs. (31) have
been determined by Poisson series processing using the series
developments of cosL and sinL in terms A. The nonvanishing
terms are summarized in Table 2. It can be seen that the J22
term is clearly dominant, followed successively by 731, 733,
J42, and /44, i.e., the coefficients with an even difference be-
tween the indicies £ and m. Remaining tesserals like /32, /4i,
etc., are less important for near-circular orbits as can be seen
in Tables 1 and 2.

Finally, the resulting secular part of the tesseral disturbing
function up to e42 terms becomes

Furthermore, the npnsingular equivalents of the Kaula in-
clination functions are defined as

(32)

These functions can be evaluated explicitly using Kaula's
tabulated results16 for F^. The results required here for l,m
up to 4,2 are summarized in the Appendix. (34)
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Terms of order e22e3, e33e2, e43, and €44 as well as higher har-
monics have been neglected here.

The derivatives of the tesseral disturbing function with
respect to the selected elements can be derived from Eq. (34). i4
The derivative with respect to \l/ requires some care. The angle
\l/ occurs only in trigonometric arguments as part of x [cf. Eq.
(6) and Appendix] , so that 3R/ty = dR/dx =

Table 2 Nonvanishing secular parts of C p̂ and
up to second order in eccentricity

Solar Radiation Pressure Perturbations
Solar radiation pressure perturbations result from the im-

pingement of photons on the satellite surface. The perturbing
acceleration induced by solar radiation pressure depends on
satellite properties such as the projected area/mass ratio and
reflectivity parameters.17 For the purposes here, constant
values are taken throughout since variations with time are
highly satellite dependent (e.g., attitude evolution). The solar
radiation induced acceleration can be expressed as

-2rS'(A/m)(af/rf)2ut (35)

where the prime refers to the sun only. The reflectivity
parameter T is at most equal to 1 (for complete specular reflec-
tion). It is seen in Eq. (35) that the force varies inversely in
proportion to the square of the distance from the sun and is
taken to be directed along the Earth-sun line. The small varia-
tions iri the force due to the satellite's relative position to the
Earth are ignored: these can be shown tp be less than the
natural variations in the solar constant itself. On the other
hand, seasonal variations in the radiation intensity due to the
Earth's orbit eccentricity are accounted for. Shadowing ef-
fects occur during the eclipse seasons of about 45 days around
the equinoxes with a maximum duration of about 70 min.
These effects are neglected here.

The acceleration in Eq. (35) can be expressed as the gradient
of the solar radiation disturbing function

RSR=-2TS'(A/m)(a'/rf)2(u''r) (36)

In terms of the adopted nonsingular elements and in units of
radians/day, one obtains:

with

(37)

<»>
The secular part can explicitly be determined with the aid of
Poisson series manipulation of the series for u arid r/a> which
yields the result

,=(3/2)eSR(a'/r')2(l + (7)(/C+gS) (39)

Terms of order eSRe3 have been neglected here. The derivatives
of the disturbing function can now be calculated without
difficulty.14

Application to GEOS-2 Orbit Evolution
After successful completion of its mission, ESA's scientific

satellite GEOS-2 was raised put of its geostationary orbit to an
almost circular orbit about 260 km higher.10 At this altitude,
the satellite is drifting in a westward direction relative to the
rotating Earth with a circulation period of 108 days.

the new GEOS-2 orbit presents an interesting test case for
the approximate model for the near-geostationary orbits
presented here. Therefore, a numerical integration with one-
day stepsize of the averaged equations was performed using an
Adams-Bashforth eighth-order prediction-corrector method
with Runge-Kutta starter. Initial conditions and reference
values for comparison were established by averaging 48 half-

fmp

2
2

3
3
3
3
3
3
3

4
4
4
4
4
4
4
4
4

2
2

1
1
1
2
2
3
3

1
1
2
2
2
3
3
4
4

0
1

0
1
2
0
i
0
i
i
2
0
1
2
0
1
0
1

l-5e2/2
9C/2-g2)/4

(/2_g2)/8
l + 2e2

n^-gVs
-/
3/ ,l-6e2

53(/*2-£2)/8

_//2
5//2

(/2 — £2)/2
l + e2

5(/2- g2)
-3//2
9//2

1-lle2

53(/2-g2)/4

0
-9/S/2

fg/4

0
-ll/g/4

'-8.
-3*
0

-53/g/4

-g/2
-5g/2

/«
0

- 10/g
-3g/2
-9g/2

0
-53fg/2

42428.01—
semi-major
axis (km)

7.6

42427.0- -—

42426.0

80 100 120
days

Fig. 3 Semimajor axis prediction over about one circulation period.

hourly values of the orbital elements produced by a different
orbit generator containing all short-periodic contributions.

Results of Averaged-Orbit Model
The long-term evolutions of eccentricity and polar vectors

are essentially identical to those at geostationary altitude.
Therefore, attention will be focused on semimajor axis and
longitude drift behavior for circulatory conditions, it must be
pointed out that the intermediate-period (i.e., about one
month) lunar effects on the semimajor axis are absent in the
averaged result. This leads to a maximum error of less than
150 m over a two-year period. The nature of the averaging
operation, in particular the fact that the moon's position is
kept constant during one satellite orbit, is responsible for this
error.

Figures 3 and 4 show the resulting behavior of the GEOS-2
semimajor axis and drift rate over a little more than one cir-
culation period. As arbitrary initial epoch* June 3, 1984, was
selected. Variations from one circulation period to the next are
insignificant on the scale of Figs. 3 and 4, which may thus be
considered as characteristic for the long-term motion.
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Table 3 Two-year comparison of averaged
and short-period orbit models

the ecliptic, one can simplify as

Parameter

Semimajor axis, m
Eccentricity
Argument of perigee, deg
Inclination, deg
Longitude of nodes, deg
Geographical longitude, deg
Drift rate, deg/day

Maximum absolute
deviation

147
6xlO"6

1.4
8x lO~ 3

0.04
0.35

4 x l O ~ 3

Short-period
amplitudes

-1000
-HP4

~2

~10~2

-3.310
drift
rate (°/d)

-3.315

-3.320

-3.325 1

-3.330 -

-3.335

-3.340

0 20 40 60 80 100 120
days

Fig. 4 Drift rate prediction over about one circular period.

In order to assess the accuracy of the averaged orbit model,
a comparison with the numerical results based on the short-
periodic variations was performed over an interval of two
years. Table 3 summarizes the results of the evaluation. The
savings in computing time are substantial, as the averaged or-
bit model requires only about 5% of the time required by the
short-period orbit generator.

Approximate Analytical Model
A simple model for the long-term semimajor axis and drift

evolution can be derived from the theory outlined above.
For near-circular, near-equatorial orbits, the ^ term in the

drift equation [cf., Eqs. (5), (6), and (8)] may be approx-
imated as:

i=-(2/ca)Ra (40)

The dominant perturbing influences on this part of the drift
rate are due to Earth's oblateness and lunisolar effects. Using
the disturbing function in Eqs. (10) and (22) with the subse-
quent expressions for the secular terms, one obtains

(41)

where the summation refers to the contributions of the sun
and moon. It can be shown that the parallactic terms are not
significant relative to the approximations to be made here.

Since the attention is focused on deriving a representative
long-term drift behavior, the C2 + S2 term in Eqs. (41) will be
replaced by its mean value over the respective third-body
revolution. Taking both the sun and moon in circular orbits in

= l-0.5sin2(23.44 deg) = 0.9209 (42)

Substituting the known constants into Eqs. (41), one obtains
the following approximation for the long-term drift rate:

= {26.83cJ-6.52/cin x 10~3 deg/day (43)

After evaluation of ca from initial or mean values, a represen-
tative constant drift rate is established.

When the semimajor axis is taken equal to rs so that cff = 1,
one finds \t/s = 2.03 x 10 ~2 deg/day, which in this particular
case is identical to the total drift rate, cf. Eq. (5). This result
may be used to calculate an approximate value for the "per-
turbed" geostationary semimajor axis ag, cf. Eq. (5),

(44)

In the case of GEOS-2, one has c f f= 0.9969 (cf. Fig. 3),
which leads to <^> = 1.97 x 10~2 deg/day. Numerical integra-
tion of the complete long-term \l/ equation confirms this result
to within 0.5 deg over a 1000 day period. This would appear to
endorse the validity of the various approximations performed
before arriving at this result.

Differentiation of the drift equation (5) leads to

X=-l.5nsc5
aa (45)

where hs incorporates the offset in the drift rate induced by
the dominant perturbing effects,

(46)

An explicit result for a that is essentially only affected by
tesseral harmonics follows from Eqs. (8) and (34),

(47)

where a near-equatorial orbit has been considered. Combina-
tion with Eq. (45) gives x=/(x) with/defined as

/(X)-1 (48)

For initial conditions in the circulation domain, x0 *s large
with respect to the drift rate variations induced by the perturb-
ing forces (for GEOS-2 by a factor 120, cf. Fig. 4). Thus, it ap-
pears justified to integrate x=/(x) in the following manner:

( „ p
X(X)= x§ + 2

^ J

1 f
.

Xo J*

= XO - €22COST22 - (49)

The satellite longitude position may now be approximated as a
linear function of time with a rate given by the averaged (over
x) value of Eq. (49),

(50)

< X > = xo + M0 (Ols/Xo) Ie22cos2(x0 - X22)

-0.5e31c2cos(xo-X3i))

For GEOS-2, one finds a mean drift rate of - 3.3247 deg/day,
which results in a maximum longitude error of less than 0.5
deg over a two-year period.

Finally, a simple approximation for the long-term semima-
jor axis evolution is obtained from Eq. (49) when using the
drift equation of Eq. (5) and the constant approximation for \[/
inEq.(43),

(51)
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In the GEQS-2 case, this prediction leads to a maximum error
of 165 m with respect to the results from the short-period
model over the two years considered.

. Conclusion
An averaged-orbit niodel for describing the long-term

evolution of near-geostationary satellite orbits has been
presented. The results have been illustrated using the actual
GEOS-2 orbit, which is about 260 km above geostationary
altitude. The accuracies of eccentricity and polar vector
predictions have been excellent in comparison to reference
values obtained from a different orbit generator containing all
short-periodic terms. Seminiajor axis and longitude predic-
tions have errors below 150 m and 0.4 deg, respectively,
uniformly over a two-year interval. In addition, a simple
analytical model for semimajor axis and longitude drift evolu-
tions has been derived from the general theory. This model has
only slightly degraded accuracies compared to the numerically
evaluated averaged model. The long-term valid orbit model
presented should be useful for quick orbit predictions, in par-
ticular in the case of satellites that have been removed from
the geostationary orbit.

Appendix: Nonsingular Inclination Functions

The nonsingular representations of Kaula's inclination
functions16 are summarized below as far as they are needed in
the final averaged tesseral disturbing function in Eq. (34).

(H220\= 3 /cos722\
V #220 / X2 \ sin722 /

\ _
/ X2

COS722
SinT22 COS722

\1
/J

Hm \ _ 15
KmJ~ 2X*

/ cos731 \
VsinT31 J

K3ll

\ = _ J_f6__2Q +JLV COSTS!
J 2X\ X j r V V s h v y ^ /

+ 2hk

X* sin732 COS732

(""')=•\ A321 /

/ #330 \ =
 15 ( COS733 \

V #330 / X3 \ sin733 /

28
IF

COS741

H412V_J1/ ,_i,+^L_.JiUA/«»v41 \
Ar4 l 2 / 2A-V XX* X3) L \ sin741 /

COS741

42 28 \ / COS742 \
/ \ siri742 /

The angle 7^ appearing here is defined as
\m), ^=2,3,..; m (A2)

Note that the angle x + Xy-X^ designates the angular distance
between the satellite's longitudinal position and the reference
longitude X^ belonging to the Jgm tesseral harmonic.
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