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Orbital Perturbations and Control
by Solar Radiation Forces

J.C. Van der Ha* and V.J. Modit
The University of British Columbia, Vancouver, B.C., Canada

Solar radiation pressure induced orbital perturbations are analyzed for a satellite in an elliptic orbit of ar-
bitrary inclination with respect to the ecliptic. The problem is formulated in terms of the two-variable expansion
procedure as well as a straightforward perturbation/rectification scheme leading to results valid over a long
duration. The vast amount of information generated by a systematic variation of design parameters is condensed
in the form of polar plots, from which the long-term in-plane perturbations can easily be visualized. The results
show that, in the first order, the semimajor axis remains unchanged in the long run, whereas the eccentricity
changes in a periodic fashion. The longitude of the ascending node shows a secular variation which is essentially
insensitive to changes in the initial eccentricity. On the other hand, the orbital inclination markedly depends on
the initial eccentricity and solar aspect angle. Subsequently, results of controlled on/off switching of the solar
radiation force, using several different strategies, are given which represent effective procedures for orbital
transfer. A suitable choice of switching strategy can lead to an increase in the semimajor axis by a factor of 10 in
less than five years for a spacecraft with an area/mass ratio of 5 m2/kg. Advantages rendered by this capability
in terms of scientific exploration, escape, and launch into heliocentric orbits are apparent.

Nomenclature
a = semimajor axis
ar = semimajor axis of reference orbit (24-hr

period), 42,241 km
c = velocity of light, 2.998 x 108 m/s
ce = constant, e/5
e = eccentricity
/ = inclination of satellite's orbit with respect to

the ecliptic
j = stands for any arbitrary orbital element

(including 77)
/ = semilatus rectum
m = mass of satellite
p =e cosco, orbital element
q =e sinco, orbital element
r = radial vector of satellite with respect to earth,

Fig. 1
t = time
us = unit vector along solar radiation
UrtU^yUp = components of us along radial, cir-

cumferential and orbit-normal directions,
Eq. (2)

wr> w<t» wp — components of auxiliary rotation vector, Eq.
(7)

x,y = auxiliary elements, e sin (rj — co) and e cos
(77 — co), respectively

A = total reflective area of satellite and plates;
cross-sectional area of spherical satellites

Ank>Bnk = integrals, Eqs. (13)
F = solar radiation force, Eq. (1)
F(e,\) = function, Eq. (21)
KlfK2 = functions, Eq. (12)
Kw»K2o = constants, Eq. (16)
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= constants, Eq. (19)
= solar constant, amount of solar energy in-

cident upon a unit area normal to the
radiation at 1 A.U. from the Sun, 1.35
kW/m2

= solar radiation pressure, S/c, 4.51 x 10 ~6

N/m2

= angle between switching locations and the
Sun-Earth line, Eq. (22) and Fig. 2

= angular rate of the Sun in the ecliptic,
1/365.2422

= ratio of solar radiation and gravity forces,
Eq.(4)

= solar aspect angle as measured from
autumnal equinox, Fig. 1

= f\ — 0, solar aspect angle as measured from
axis v = 0 (eclipitic orbit only)

= </> — co, position of satellite as measured from
instantaneous perigee axis

= material parameter, 1 - r + p for plate or 1 - r
for sphere: plate with perfect specular
reflection, /c = 2; sphere with perfect specular
reflection or perfect absorption, K = 1; sphere
with perfect diffuse reflection, K = 1.44

= 77 — 00, angle between position of Sun and
perigee axis, Fig. 2 (ecliptic orbit only)

= Ear th ' s g r av i t a t i ona l p a r a m e t e r ,
3.986xl014m3/s2

= quasiangle used as independent variable, Eq.
(5) and Fig. 1

= length of interval before rectification
= switching points (J =1,...,6), Fig. 2
= reflectivity of satellite (constant)
= transmissivity of satellite (constant)
= position angle of satellite as measured from

line of nodes, Fig. 1
= v — </>, Fig. 1
= argument of perigee as measured from line of

nodes
= oH-i/s argument of perigee with respect to

axis*> = 0
= first-order changes in arbitrary element./
= longitude of nodes with respect to the vernal

equinox
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( " ) , ( ) ' = differentiation with respect to t and *>,
respectively

Subscript
00 - initial conditions

Introduction

E VER since the first exhibition of solar radiation per-
turbation effects upon an Earth satellite (the Vanguard I,

launched on March 17, 1958), many aspects of solar radiation
induced orbital perturbations have been studied.1'2
Especially, the anomalous behavior of the Echo I balloon
satellite whose perigee varied between about 900 and 1500 km
above the Earth, received a great deal of attention.3'4

The feasibility of utilizing solar radiation forces for con-
trolled orbital transfer was assessed quite early in the space
age. In 1958, Garwin5 envisioned an exploration of the
planetary system by means of large solar sails made of
aluminized Mylar. The concept was further substantiated in
subsequent studies.6"9 In a geocentric configuration, Sands10

proposed to rotate the sail about an axis perpendicular to the
orbital plane at half the orbital rate of the satellite around the
planet. This strategy enables the satellite to reach escape
trajectory eventually. Considering an orbit normal to the
ecliptic, Fimple11 determined the control strategy which
maximizes the solar radiation force component along the
instantaneous velocity. This strategy proves to be particularly
effective as it maximizes the rate of energy increase. On the
other hand, Cohen et al.12 have achieved orbital change in the
ecliptic plane by means of an on/off switching program for
the solar sail. During the on-phase, when the satellite moves
away from the Sun, the plate is aligned with the radius vector
and perpendicular to the orbital plane, while the off-phase is
characterized by the plate being aligned with the solar
radiation. This switching policy leads to a substantial increase
in angular momentum and thus in the semilatus rectum.

In this paper, a satellite in an arbitrary geocentric orbit is
considered while the solar radiation force has a constant
magnitude and is directed along the instantaneous Sun-Earth
line. This model is sufficiently realistic for communications
satellites with large solar panels kept normal to the radiation
for maximum on-board power production. Also, spherical
satellites with homogeneous material characteristics would be
covered by this formulation. A few approaches for studying
the long-term orbital behavior of the spacecraft are for-
mulated, namely the two-variable expansion procedure13'14

and the straightforward perturbation method in conjunction
with repeated rectification. The former approach yielded
interesting results in small-thrust problems15"17 and led to
long-term analytical approximations for the orbital elements
under solar radiation forces for an orbit in the ecliptic
plane.18

After establishing the long-term perturbations under
continuous exposure to sunlight pressure, the responses of a
few on/off switching strategies are established. During the
on-phase, the plate is assumed to be normal to the incident
radiation while the off-phase is characterized by the plate
being aligned with the Sun-Earth line. Alternatively, the
analysis is valid for a Mylar-coated plastic sphere with a
pumping device for inflating and deflating the balloon.

The results established here are of interest for orbital
correction and transfer of a large class of spacecraft. For
instance, stationkeeping of communications satellites with
controllable solar arrays could be accomplished in this
manner. Their normal operation would remain unaffected
during the on-phase, i.e. about half the time. The switching
strategies are also relevant for raising a solar sail or Satellite
Solar Power Station (SSPS) from a low or intermediate
geocentric orbit into a heliocentric trajectory by means of
solar radiation forces.

In the analysis no restrictions have been placed on the
eccentricity of the initial nor of the ensuing osculating ellipses

orbit

Fig. 1 General three-dimensional configuration of Earth, satellite,
and Sun.

and the singularity in the equation for the argument of the
perigee is avoided by a suitable transformation. The solar
parameter e, denoting the ratio of solar radiation and Earth's
gravity force at geosynchronous altitude, is assumed to be of
the same order of magnitude as 6, the angular rate of the Sun
in the ecliptic. The solar aspect ratio angle is effectively
treated as if it were an orbital element.

Formulation of the Problem
Consider a satellite in an arbitrary orbit as shown in Fig. 1.

The inertial reference is represented by the vernal equinox, the
direction perpendicular to it in the ecliptic and that normal to
the ecliptic. The position of the satellite is specified by the
vector r(0) where </> is measured from the line of nodes.
Assuming homogeneous reflecting properties, the solar
radiation force upon a satellite of the balloon type or one
modelled as a plate normal to the Sun in an orbit around the
Earth, is of the form

F=S'AKUS
(1)

with ury Ufa up representing components of the unit vector us

in radial, circumferential, and orbit-normal directions:

(2)

ur= - [cos<£ cos(r;-Q) H-sin<£ cos/

w0=[sin0 cos(rj-ti) -cos<£ cos/

Up = sin/ sin (rj — 12 )

Usually the instantaneous orbital elements are described in
terms of the classical Lagrange's perturbation equations
involving the variables /, e, co, /, and 12. In nondimensional
form, these equations can be written as

(/) =ercos<t>up/l1/2

0 =e rsinct> u p / ( l 1 / 2 sin/)

e = el1/2{u

(3)
co =el'/2(-urcosd+ [(2 + ecosO)sin6]u(l)r/l

-esincj) cot/ upr/l}/e

where </> =/ 1/2 /r2 — ficos/ and 6 = $ — co.
The reference length and time units are ar and (ar

3 1 » //2 ,
respectively; the small nondimensional parameter e designates



MARCH-APRIL 1978 ORBITAL PERTURBATIONS AND CONTROL BY SOLAR RADIATION 107

the ratio of the solar radiation and gravitational forces,

(4)

The form of the system of Eqs. (3) is not particularly con-
venient in exploring analytical representations for the per-
turbed orbital elements. One problem concerns the choice of a
suitable independent variable. In this regard, the quasiangle v
defined by the differential relation,

(5)

turns out to be very attractive both in terms of mathematical
convenience and physical interpretation of results. Another
difficulty is the singularity in d> when the instantaneous orbit
becomes circular. Therefore, a different formulation is ex-
plored. The spatial equations for orbital motion under the
influence of the solar radiation force may be obtained from
Newton's second law, while accounting for the rotation of the
local reference axes in the inertial frame,

f+ 1/r2 + rw2 = eur

2fwp+rwp=eu4)

rwpw, = eup (6)

where
/) + ( / ) ' cos</>

(7)

Using the transformation u=\/r as in the derivation of
the u n p e r t u r b e d Kepler el l ipse and wr i t i ng
u ( v ) =(1 +pcos*> + #sinj>)// with osculating elements p, q,
and /, a closed system of first-order differential equations in
terms of the independent variable v is obtained from Eqs. (5-
7):

•l'\v) = 2er3.

p'(v) = er2{

q'(v) = er
2{-ur

ft' (v) = er3upsin(v —

i' (P) = er3upcos(v —

(p + cosv)r/l] }

+ (q + sinv)r/l]

=fi' (v)cosi (8)

The elementsp = ecos& and # = esinco are preferred to e and co
in order to have a uniformly valid representation for all ec-
centricities, including e = Q where co becomes indeterminate.
Physically, the angle oj = co + \l/ defines the position of the
instantaneous perigee as measured from the axis z> = 0. It may
be pointed out that the apparent singularity in the equation
for Q for small / is of no consequence as sin/ cancels due to its
appearance in up. It is convenient to treat the solar aspect
angle r/ as a quasiorbital element defined by the differential
equation

(9)

with 5 = 1/365.2422 denoting the apparent angular rate of the
Sun in the ecliptic plane.

Two-Variable Expansion Procedure
Assuming that e is of the same order of magnitude as 5, the

orbital elements and the solar aspect angle rj are expanded as

'>,v)+*2j2 (w) + ~. (10)

where j denotes any one of the elements/?, q, I, Q, /, \I/, 17, and
v stands for ev. Substituting the series above into Eqs. (8) and
(9), and collecting terms of like order in e gives for the zeroth
order: j0(v,i')= Jo (*') andj0(0)=j00. The flexibility gained
through addition of the independent slow variable f> shall be
utilized by requiring that the first-order functions jj ( v, v)
remain bounded in v. Thereto, the right-hand sides of the
first-order equations are expanded in terms of Fourier series
with slowly varying coefficients. To eliminate unbounded
contributions, the nonharmonic terms must vanish leading to
the following set of equations for the zeroth-order ap-
proximations:

dp0/dv = (I0
2/2<jr) ( Kj [PoB3] (2ir) (2*)]

-K2 [A 20 (27r) +p0A31 (2ir) + '/2A30 (2ir)

+ MA32(2lT)]}

dq0/dv = - ( l 0
2 / 2 T r ) { K 2 [ q 0 A 3 I ( 2 < K ) + ' / 2 B 3 2 ( 2 T r ) }

=2(l0
3/2ir)[KjB31(2ir)-K2A31(2ir)}

d/o/di> =

d\l/0 / d v = cos/o dQ0 / d v

H / H - /2
drj0/di' = -

iru0sm(ri0-ti0) [cos\l/0A3I(2ir)

(2Tr)A20(2ir) (11)

Here Kl and K2 represent functions of the slow variable i>,
defined by the relations

t (v) =sin2 ( i 0 / 2 ) c o s ( r j 0 — Q0 — \l/0

+ COS2 (/,

- sin (12)

The integrals,

cos(A:r)dr

:r)dT
(13)

for /i=l,2,3,..., A: = (Q), 1, 2, ..., and p2+q2<\ can be
evaluated in a straightforward manner by means of recurrence
relations.19 Note that Ank(2ir) stands for A nk [po(v)t qo(v)\
2ir] in Eq. (1 1). Upon substitution of the resulting expressions
for the integrals of Eqs. (13) into Eqs. (11), a system of
nonlinear first-order differential equations is obtained. The
semimajor axis a0 (v) is related to 10, p0 and q0 giving

d-e0
2) -+

(l-e0
2}

_
=0 (14)

so that a0 (v) = a00 and over a long time the total energy of the
satellite remains conserved (in zeroth-order approximation).
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Physically, the energy added while moving away from the Sun
balances that removed during the motion towards the Sun in
the present approximation.

Perturbation/Rectification Procedure
Although analytical solutions have not been obtained for

the orbital elements described in Eqs. (11), numerical in-
tegration could readily be performed. However, an alternate
convenient and highly effective procedure is available.
Recognizing that the rate of change in the orbital elements is
small, a straightforward perturbation expansion of the form
j ( v ) =Joo + Aj(v) 3- ... provides a valid approximation over
some limited interval of v. Using the conventional approach,
the first-order perturbations can be calculated:

=2el3
00[K10B31(v)-K20A31(i>)}

= e/00sin(r/00-Q00) [cos\//00B3] (v) -s\n\ls00A31 (v) }

=el2
00sini00sm(ri00-ti00)[cos\Is00A3}(v)

+ sin\l/00B3I(v)]

= cos/00

(15)

where K10 and K20 are constants defined as follows:

Kw = sin2 ( 100 12 ) cos ( rj00 - Q00 - \l/00 )

+ cos2 (I oo/2) cos(rj00 -

K20 = cos2 (f'00/2) sin (t]00 - Q00 + \!/0o)

-sin2(i00/2) si (16)

The expressions in Eqs. (15) are perfectly suitable for ob-
taining changes in the orbital elements for time spans of the
order of one or even a few revolutions.

To obtain changes in the elements valid over a long
duration, a certain interval (0, iy) is chosen and the ele-
ments are updated (or rectified) at v — vf by putting
C/00)rect =700 + A/0'/) • This iteration procedure can be
performed by a digital computer at a considerable saving of
time and effort compared to a numerical integration of the
original equations or the zeroth order Eqs. (11) obtained
through the two-variable expansion method. It should be
noted that in practice it is convenient to take the interval zy
equal to TT, 2ir, etc. because this leads to relatively simpler
expressions for the integrals. Comparison with numerical
results obtained by double-precision Runge-Kutta integration
of the exact system of Eqs. (8) suggests that rectification after
one revolution (i'f=2ir) results in two significant digits for
the eccentricity over a period of 1200 days when e = 0.0002 is
taken. This compares closely with the accuracy of three
decimal places achieved through the two-variable expansion
procedure in the case of an orbit in the ecliptic. 18

It is interesting to compare the structure of Eqs. (15) for
i> = 2ir with Eqs. (11). Whereas the straightforward per-
turbation method in Eqs. (15) simply calculates changes
.A/(2ir) by keeping all elements constant (j=Joo) during the
integration, Eqs. (11) are still in differential form with respect

to the slow variable v. One may interpret the zeroth-order
two-variable Eqs. (11) as obtained from rectification of the
perturbation Eqs. (8) with the dependence upon v eliminated
by averaging and an infinitesimal interval before rectification,
di>. Consequently, the zeroth-order two-variable results
should be expected to yield better approximations to the exact
solution than those from rectification (after one revolution)
and iteration of the first-order straightforward perturbation
solution. On the other hand, in order to improve upon a
certain accuracy, one needs to solve for the higher order terms
in case of two-variable expansion procedure, while the ac-
curacy of the perturbation/iteration method can be enhanced
by simply choosing a smaller interval before rectification of
the first-order results. Finally, it may mentioned that Eqs.
(11) can also be obtained through the classical method of
averaging, since the nonharmonic term in the Fourier ex-
pansion represents the average value of the function under
consideration.

The results from the perturbation/rectification approach
with Vf = 2?r can be reduced, after substitution of the integrals,
to the following compact form :

Ap = - 3Trea2
00K20 (l-e2

00) 1/2

A? = 3irea2
00K10(l-e2

00)l/2

A/ =6irea2
00 [K20p00 -

-q00cost00]/(l-e2
00)'/2

A/ = -3*effg0sin/00sin( 1/00-000)

+ q00smtQO]/(l-e2
00)'/2

Ai/> = cos/00 AQ

It should be emphasized that A# = 0, meaning that the total
energy (and thus the major axis) returns to its original value
after one revolution. For completeness the results for Ae and
Ao; (if e00 ̂  0) are given:

Aco = (p00 A<? - ^00 A/7) /e2
00 = 3^a2

00K40 (l-e2
00) 1/2 /e00 (1 8)

with the constants K30 andK40 given by

K30 = KJQ sin&00 — K20 cos&oo

(19)

Orbital Control by Switching
With some appreciation as to the orbital perturbations due

to solar radiation pressure, the next logical step would be to
explore the possibility of achieving desired orbital changes by
means of the solar radiation force. However, the op-
portunities are limited in the case of a continuously acting
force, directed along the Sun-Earth line because the average
change in the semimajor axis over a long period vanishes. This
severely restricts the character of attainable target orbits. On
the other hand, substantial changes in all orbital elements can
be obtained if the force were to be switched off during a
certain part of the orbit. The switchoff may be accomplished
by aligning the plate parallel to the radiation (or by deflation
in case of a balloon satellite), while the on-phase represents
plate normal to the radiation. The switching instants can be
chosen so as to meet a given objective, e.g., one may want to
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enlarge the orbit by keeping changes in the semilatus rectum
positive during the on-phase. The switching may be assumed
to occur instantaneously as the time taken to complete the
maneuver represents a negligible fraction of the orbital
period. For a given strategy, changes in the orbital elements
can be calculated by integration of Eqs. (8) over the relevant
interval. In the cases considered here, the interval is always
less than 3?r/2, and sufficiently accurate results are obtained
by taking the elements on the right-hand side of Eqs. (8) to be
constant during integration. This corresponds to expanding
the elements in a first-order straightforward perturbation
series as discussed in the previous section. In general, changes
in the elements are determined from Eqs. (15) by taking the
difference A/ (*>/) — A / ( j > ; _ 7 ) . In all, three procedures were
attempted with the on/off control activated at (Fig. 2): 1) the
Sun-Earth line (points 1 and 2), 2) positions where the velocity
vector is normal to the Sun-Earth line (points 3 and 4) 3)
apogee and perigee (points 5 and 6). Although the problem
can be formulated and solved numerically for general three-
dimensional orbital control, here several simpler cases for an
ecliptic orbit are considered to illustrate the effectiveness.
Furthermore, they yield results which can be expressed in
compact analytical formulas and hence give better ap-
preciation of the control process as to the various input
parameters.

A. Increase in the Semilatus Rectum
From Eqs. (8) it is seen that l'(v)>Q as long as u^ is

positive. Hence, by keeping the plate switched on during the
interval where I' (v) >0 and off when / ' (v) <0, a transfer
program can be established whereby the semilatus rectum / is
made to grow more rapidly than under any other bang-bang
switching program. The switching points v} and v2,
representing the zeros of w0 can readily be determined. In the
case /00 = 0, u^ equals sin (v — fj) and the switching points
vi — r\ and v2 = rjf + TT lie on the Sun-Earth line; v} between the
Sun and Earth and v2 on the opposite side of the Earth (Fig.
2). It is convenient to express the results in terms of the angle
X = if — o>, at which the Sun-Earth line is inclined with respect
to the instantaneous major axis. A few of the typical results
are

A/ =2ea2l{3-(l-e2)/(l-e2cos2\)+3eF(e,\)sin\}

Aa =4ea2l/(l-e2cos2\)

Ae = -3ea lsm\{esin\/(1-e2cos2\) + F(e,\) }

eAor =3ealcos\{es'm\/(l-e2cos2\) + F(e,\)} (20)

where the variables j denote the instantaneous orbital
elements at switchon. The function F(e,\) stands for

F(e,\) = 7r/2 + arctan[esinX/(/-e2)
(21)

While these expressions designate the changes in the elements
over one revolution, the long-term behavior can be found by
repeated rectification of the elements and iteration of the
results in Eqs. (20).

B. Increase in Semimajor axis
Another interesting strategy would be the one in which

switching takes place at the instants when the velocity vector is
normal to the Sun-Earth line. Switchon occurs when the
satellite is (roughly) between Sun and Earth (point 3) and
switchoff at point 4 on the other side. This policy is effective
in the sense that the rate of change of total energy (and major
axis) is always positive during the on-phase, since the com-
ponent of the perturbing force along the instantaneous
velocity vector is positive. This approach makes the change in
the semimajor axis larger than any other bang-bang switching
program. It is clear that if the orbit is circular, this switching
program is identical to the previous one. The switching in-
stants are determined as v3=rj + a and v4 = rjf -I- TT — a with a.
defined as

a = arcsin (qcosrj — psinrj) = arcsin (esinX) (22)

A = T)-0>

Fig. 2 Configuration of switching points for controlled orbital
change.

If 0 <X<?r , the on-phase is less than TT radians, whereas for
TT < X < 2-K it is more. The change in orbital elements at the end
of one on/off cycle may be written as

Aa = 4ea3(J-e2sin2\) 1/2

A/ = 3irea3esin\(l-e2) //2

+ 4ea2l(l + e2sin2\)/(l-e2sm2\) 1/2

Ae = -ea2cos\[3Tr(l-e2)'/2/2

+ 4e(l-e2)sin\/(l-e2sin2\) //2J

eAco . =ea2(l-e2)'/2cos\{3Tr/2

+ 4e(l-e2) l/2sin\/(l-e2sin2\) l/2}

+ ea2e3cos(2\)/(l-e2sin2\)I/2 (23)

It can be shown that Aa is indeed larger and A/ smaller than
the corresponding results in Eqs. (20) for e>0 and that the
results coincide for e = 0.

While the long-term implications of the present switching
strategy can be assessed by repeated rectification and iteration
of the results of Eqs. (23), additional insight is obtained by
application of the two-variable expansion procedure.
Although this method is usually employed for equations with
continuous right-hand side, in the present case one may in-
terpret the zeroth-order results as those obtained by analytical
averaging (where the right-hand side of the first-order dif-
ferential equations is replaced by their average rate of change,
i.e., they are integrated over the on-interval and divided by
2ir). In the evaluation of higher-order contributions, many
terms in the Fourier expansion would need to be carried,
however, for obtaining acceptable accuracy. In the present
case, e is of the order 10 ~4 to 10 ~3 so that the zeroth-order
approximation is expected to be a uniformly valid (e-band)
representation for the actual solution over a (nondimensional)
time interval of the order 103 to 104, corresponding to upper
and lower limits of 1600 and 160 days. For an assessment of
the effectiveness of the control strategies, accuracies of this
order would be sufficient, especially since the errors due to
simplifying assumptions (e.g. instantaneous switching) may
lead to comparable discrepancies in a practical application.

The zeroth-order equations obtained by the two-variable
expansion procedure can be written in the form

= 2a0
3(l-x0

2)'/2/Tr
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x&(v) =yoao3/2/c6-Xoa0
2[l+(l-x0

2-y0
2)/(l-x0

2)'/2]/Tr

yi(v) = -x0a0
3/2/c€+y()a0

2x0
2/['K(l-x0

2) 7/'] (24)

These equations were integrated numerically using a double
precision Runge-Kutta routine with error control. The
solution was found to be in good agreement with the one from
the rectification/iteration method. Over approximately four
years, the results are consistent up to the first decimal place of
the semimajor axis. An interesting estimate for the major axis
can be found for near-circular orbits

a0(v)<*a00/(l-4va2
00/ir)"

predicting that an escape trajectory is not reached before
J/ = TT/ (4ea2

00), i.e. approximately 625 revolutions (7 years) for
e = 0.0002 and a00 = 1 .

C. Switching at Perigee and Apogee
Finally, a control program is studied where the swtich-on

takes place at the instantaneous perigee v6 = w and switchoff
at the apogee v5 = v6 + n. The orbit is assumed to remain
elliptic throughout. The first-order perturbations were ob-
tained as

A/ = 3ireea3(l-e2) l/2s

Aa = 4ea3cos\

&e = -3Trea2(l-e2)sin\/2

= 3irea2(l-e2)1/2

(l-e2)cos\

(25)

The change in Ae is exactly one-half of that when the force
acts continuously. Although Eqs. (25) give the results only
over one revolution, the long-term perturbations may be
obtained by iteration and rectification.

Discussion of Results
Figure 3 shows the secular variations of ft, the longitude of

the ascending node, for four different values of initial solar
aspect angle (rj00) . Of particular interest is the insensitivity of
the plot to the initial orbital eccentricity in the range 0-0.5.
Long-term variations of the orbital inclination for two dif-
ferent values of initial eccentricity, zero and 0.5, are presented

a,r. = 1
i00 = 23.435°
e00= 0,0.1 ,0.5
€ =0.0002

noo=o,n
- <loo=TT/2 ,3%

200 400 600 800 1000"
days

Fig. 3 Typical long-term behavior of longitude of nodes as affected
by initial solar aspect angle.

in Fig. 4 and 5, respectively. For the case of a circular orbit,
the oscillating perturbations are confined to within 0.5 deg.
Note that influence of the initial position of the Sun when
located on the line of nodes is the same (rj00 = 0, IT). This is
also true for the starting position of the Sun at right angles to
the line of nodes (rj00 = Tr/2, 3ir/2)9 but here the per-
turbations are of higher frequency and lower amplitude.
However, for £00 = 0.5 (Fig. 5) there is a marked dependence
on initial solar aspect angle with substantially larger per-
turbations of about one year period.

Long-term variations of e (eccentricity) and co (argument of
the perigee) are presented in the form of polar plots
(p = ecos&, q = esin&) in Fig. 6. It is emphasized that con-
siderable condensation of information is involved as four
different values of fi00(0,ir,7r/2, 3ir/2) and two values of
initial eccentricity (£00 = 0, 0.5) are represented. The ec-
centricity is periodic with a period of 363 days, and the
evolution of the major axis depends critically upon the initial
eccentricity. For e00 sufficiently large, the orbit remains
elliptic with its axis exhibiting periodic oscillations (amplitude
of about 12 deg for e00 = 0.5) as well as a slow clockwise
rotation (about 2 deg per year), as in Fig. 6b. For an initially
circular orbit (Fig. 6a) the behavior of o> is completely dif-
ferent, showing an increase of 180 deg over one year followed

days

Fig. 4 Perturbations of orbital inclination for initially equatorial
circular trajectory.

600 800 1000 1200
days

Fig. 5 Behavior of orbital inclination for initially equatorial orbit of
eccentricity 0.5.
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-0.2 -0.

Fig. 6 Polar plots for initial eccentricity of zero and 0.5. Here
p = e cosco and q — e sin&.

20 60
months

Fig. 7 Behavior of semilatus rectum during 1-2 switching program
(case A).

by an instantaneous jump of 180 deg when the eccentricity
passes through zero again. Also the slow clockwise rotation is
apparent.

The most striking outcome of the switching procedures A
and B was a spectacular change in the semilatus rectum (/)
and and the semimajor axis (a) (Figs. 7 and 8). Note that
starting from the geosynchronous altitude, / and a change by a
factor of 10 in about five years! The behavior remained
essentially similar for starting eccentricity in the range of 0-
0.5 and for all rj00.

Figures 8 and 9 present the results of switching at points 3
and 4 as mentioned in case B. Variation of the semimajor axis
is quite large for geosynchronous orbits. However, for near-
Earth satellites, where gravitational influence predominates,
the change in orbit is relatively small as expected. Never-
theless, starting out from a00 = Q.34 (i.e. 8000 km above the
Earth), the geosynchronous altitude can be reached in less
than five years. This could be of interest for future space
stations, such as Solar Satellite Power Station (SSPS), which
may be constructed at a lower altitude orbit and may propel
itself to a geosynchronous position using this switching
program. Note also the rather large variations in eccentricity
(Fig. 9), thus permitting a sweep over a wide expanse of space.
Advantages rendered by this capability in terms of trajectory
transfer, scientific exploration, escape, and launch into
heliocentric orbits are apparent.

Concluding Remarks
Solar radiation induced perturbations for a satellite in an

arbitrary trajectory are studied using the two-variable ex-
pansion procedure and a perturbation/rectification scheme.
Controlled orbital transfer through several switching
strategies is also explored. Based on the analysis the following
general remarks can be made.

aoo=i

<E =0.0002

00= 0.5 ,

-- — - e00=o
T]oo=n

10 20 50 6030 40
months

Fig. 8 Controlled variation of the semimajor axis for 3-4 switching
program (case B).

10 20 30 40 50 60

Fig. 9 Large-scale secular variation in eccentricity during 3-4
switching program (case B).

1) Both the two-variable expansion and per-
turbation/rectification procedures yield long-term valid
results of good accuracy. If the resulting equations can be
integrated analytically, the former would provide elegant
closed-form solutions. On the other hand, however, the latter
is more attractive in terms of computational time and effort
compared to a numerical integration of the two-variable or
original equations.

2) The longitude of the ascending node shows a secular
variation which is essentially insensitive to the initial orbital
eccentricity in the range 0-0.5.

3) The perturbations in orbital inclination show a marked
dependence on both initial solar aspect angles and ec-
centricity.

4) Polar plots provide a concise and attractive way for
visualizing the long-term behavior of the in-plane orbital
elements; the variation in eccentricity is periodic while the
argument of the perigee shows a slow secular trend. The
semimajor axis remains essentially constant in the long run.
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5) A suitable choice of switching strategies can lead to a
spectacular change in the major axis. This can be used to
advantage in the planning of scientific space exploration,
trajectory transfer, launching of space stations, and many
other applications.
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