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Spin Axis Attitude Determination Accuracy Model
in Presence of Biases

Jozef C. van der Ha∗

Mission Design and Operations, Columbia, Maryland 21044

A practical model is presented for the effects of biases on the spin axis attitude pointing orientation of a spin-
stabilized spacecraft. Biases are induced by spacecraft design limitations, for example, dynamic imbalance and
sensor mounting alignment errors, and by environmental effects such as the variations in the infrared Earth
radius seen by the Earth sensor. The measurement equations for the sun and Earth sensors are formulated in the
presence of the relevant biases. The effects of the biases on the angular measurements are established by means of a
small-angle perturbation technique. The propagation of the biases into the resulting attitude solution is derived by
means of a realistic single-frame attitude-determination method. The statistical properties of the expected attitude
error can then be expressed in terms of the specified input biases. Furthermore, practical approaches for the
reconstruction of the biases from the observed measurement residuals are provided. The models are demonstrated
using actual sensor data of the Comet Nucleus Tour (CONTOUR) spacecraft collected during its phasing orbits
in August 2002. The sensitivities of the sun and Earth sensor measurements and the attitude vector to the relevant
biases are analyzed in detail, and the reconstruction of the biases in the infrared Earth radii is illustrated for
CONTOUR’s final sensor coverage interval.

I. Introduction

S PIN stabilization represents a convenient and robust spacecraft
design concept for many space mission applications. This con-

cept is often used to provide stability during an injection maneuver
performed by means of a solid rocket motor (SRM), for instance,
when inserting a geostationary spacecraft from a transfer orbit into
its geostationary orbit. Spin stabilization may also be used for the
injection of deep-space probes into their heliocentric trajectories,
as was done in the case of the Comet Nucleus Tour (CONTOUR)
mission in August 2002 (Farquhar and Dunham1). In any case, it is
crucial that the attitude-determination error at the time of the SRM
injection is as small as possible; typical requirements for the attitude
half-cone pointing error are 0.5 or 0.75 deg. An attitude-pointing
error at the time of the injection leads to an error in the achieved
orbit, which usually must be corrected afterward by thrusters using
onboard propellant. Thus, the attitude error may have a direct impact
on the mission lifetime because propellant savings can be used for
extending the lifetime of a geostationary satellite2 or for widening
the objectives of a deep-space mission, for instance, by performing
another comet flyby.

A typical sensor that is used for the purpose of spin axis attitude
determination is the integrated Earth sun sensor of Galileo Avionica.
This sensor generates measurements of the sun aspect angle, the
Earth chord-length angle, and the sun-Earth dihedral angle, that is,
the angle between the plane formed by the spin axis and the sun
vector and the plane defined by the spin axis and the Earth vector.
The latter two angles are usually measured independently by two
infrared pencil beams (with different mounting angles) scanning the
Earth’s disk.3

There exists a large body of literature dealing with the determi-
nation of the attitude pointing of a spinning spacecraft, for exam-
ple, Wertz.4 When the accuracy of the solution resulting from the
attitude-determination process is assessed, it is crucial to distinguish
between random and systematic errors. The effects of random errors
can be reduced by simply increasing the number of measurements
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that are used in the estimator (to the extent that the spacecraft atti-
tude remains stable during the interval under consideration). On the
other hand, the adverse influences of biases, that is systematic errors,
can not be mitigated in a simple manner. Thus, the accuracy of an
attitude solution resulting from any method (no matter how sophis-
ticated) may well be contaminated by the presence of significant but
unknown bias effects. Sometimes5 biases reveal themselves when
sensor measurements are collected at different times under different
geometrical conditions. A quantitative reconstruction or estimation
of individual sensor biases is never a straightforward exercise and
should be designed and tested with care before its operational use.

An earlier paper2 contained a covariance analysis for the attitude-
determination accuracy in geostationary transfer orbits on the basis
of expected bias errors in the sensor measurements. That model
provides a useful design tool for optimizing sensor settings and for
understanding the evolution of the achievable attitude-determination
accuracy over the sensor coverage interval. Furthermore, a single-
frame attitude-determination method indicates that a pointing accu-
racy of less than 1 deg can be achieved in practice under worst-case
bias effects. Palimaka et al.6 provide further insights into the achiev-
able attitude-determination accuracy on the basis of a least-square
attitude-determination method. Analyzing data from a number of
satellites, they conclude that a worst-case attitude-determination
accuracy of 0.5 deg is achievable for the injection of geostation-
ary spacecraft. Sullivan et al.7 provide useful insights obtained by
simulating a number of different attitude-determination methods in-
cluding estimation procedures for the biases in the Earth chord width
and the sun–Earth dihedral angle.

In a previous paper by the author,8 a straightforward and robust
attitude-determination method, that is, the equal-chord method, was
presented. It uses angular measurements that are referred to a single
point during the Earth sensor coverage interval, namely, where the
chords produced by the two pencil beams are identical. The resulting
attitude solution is practically insensitive to uniform biases in the
measured chord lengths at the time of equal chords.

In the present paper, a fresh look is taken at the nature of the biases
affecting the sensor measurements and their effects on the achievable
attitude-determination accuracy. Sensor-internal mechanical mis-
alignments and electronic processing biases can be significantly
reduced by the careful calibrations of the sensor outputs during
prelaunch laboratory tests using the flight hardware. These calibra-
tion data should be employed in the ground processing of the actual
sensor measurements to achieve the best possible attitude pointing
knowledge. The residual angular biases in the sensor measurement
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angles are typically only a few hundredths of a degree and are neg-
ligible in practice.

After the sensor calibration data are incorporated, the following
principal sources of biases remain: 1) spacecraft dynamic imbalance
effects, 2) misalignments of the sensor box relative to the spacecraft,
and 3) systematic errors in the effective Earth’s infrared radius.

Seasonal influences (in particular, the north–south thermal gradi-
ent) produce asymmetrical biases in the Earth’s radiation profile that
lead to systematic errors in the crossings of the Earth’s infrared disk
measured by the Earth sensor detectors. Other biases, for instance,
in sun ephemeris and orbit-determination knowledge, are usually of
the order of a few hundredths of a degree and may be neglected in
comparison to the errors considered here.

A model is presented for the propagation of the dominant system-
atic biases through the attitude-determination algorithm. The model
is useful for establishing, during the spacecraft design phase, a re-
alistic budget for the attitude-determination error on the basis of the
predicted statistical properties of the input biases. Finally, the model
identifies the basic relationships between the individual biases and
the individual sensor measurement angles. These insights lead nat-
urally to a system of equations that can be used in an operational
procedure for determining the individual biases from the observed
measurement residuals. The application of the model is illustrated
using the actual parameters and measurements of the CONTOUR
spacecraft during its phasing orbits in August 2002.

II. Geometrical Bias Model
A. Assumptions

The effects induced by the biases will be formulated in terms of
a linear, that is, first-order, model that will be established over an
interval of time corresponding to a single spacecraft spin revolu-
tion. Considering the specific objective as well as the time frame
of this approximate model, we may adopt the following operational
conditions:

1) Disturbance and control torques are assumed to be absent, and
so the angular momentum vector can be considered fixed in inertial
space

2) The spacecraft is performing a pure spin about its dynamic
spin axis, that is, the maximum or minimum axis of inertia, so that
nutational effects are assumed to be absent

3) The spacecraft spin rate is assumed constant (typically, in the
interval between 10 and 60 rpm)

4) The sun’s position as seen from the spacecraft is taken fixed in
inertial space

5) Also the Earth’s position as seen from the spacecraft is taken
fixed in inertial space in the present analysis; although the Earth’s
motion may be appreciable during a single spacecraft spin revo-
lution, that is, up to 0.4 deg for a spacecraft in low Earth orbit at
a 10-rpm spin rate, the assumption is justified for the purpose of
evaluating the effects of the small biases on the resulting attitude
solution in a first-order analysis.

B. Sun and Earth Vectors in Principal Frame
In the absence of nutation, a spinning spacecraft will naturally

perform a pure spin rotational motion around its maximum or min-
imum principal inertia axis. Figure 1 shows the relevant geometry
with the actual (positive) spin axis along the principal inertia axis
Z p . The plane formed by this axis and the sun vector is fixed in iner-
tial space under the adopted conditions. Therefore, it is meaningful
to introduce the inertial reference axes Xi , Yi , and Zi .

1) The Zi axis coincides with the Z p axis, that is, the actual
(dynamic) spacecraft spin axis.

2) The Xi axis is taken within the plane containing the sun vector
and the Z p axis; it remains fixed in inertial space but lies always
within the spacecraft equator, that is, the plane that is normal to the
spin axis and contains the spacecraft center of mass.

3) The Yi axis completes the coordinate triad, lies also within the
spacecraft equator, and is fixed in inertial space.

The sun unit vector S points from the spacecraft to the sun and
forms a constant angle, (that is, the sun aspect angle βS in Fig. 1)

Fig. 1 Geometry of sun, Earth, and spacecraft principal frame.

with the unit vector Zp along the dynamic spin axis,

βS = arccos{S · Zp} (1)

The projection of the sun vector in the spacecraft’s equatorial plane
coincides with the Xi axis, and its components in the inertial refer-
ence frame (Xi , Yi , Zi ) are

Si = (sin βS, 0, cos βS)
T (2)

The unit vector E points in the direction of the instantaneous Earth
center and forms a constant angle with the spacecraft dynamic spin
axis (under the preceding assumptions), that is, the Earth aspect
angle βE shown in Fig. 1,

E · Zp = cos βE (3)

The components of the Earth vector in the adopted inertial reference
frame (Xi , Yi , Zi ) are

Ei = (sin βE cos α, sin βE sin α, cos βE )T (4)

The angle α is the sun–Earth dihedral angle, which represents the
rotation angle (about the dynamic spin axis) from the sun spin axis
plane to the Earth spin axis plane (Fig. 1). The sun–Earth angle
ψ = arccos (S · E) is shown in Fig. 1 and is independent of the
attitude orientation. The angles βS , βE , α, and ψ are interrelated
(from spherical geometry) by

cos ψ = cos βS cos βE + sin βS sin βE cos α (5)

This result may be used as a check on the consistency of the mea-
surement angles βS , βE , and α.

The plane formed by the spacecraft principal X p and Z p axes in
Fig. 1 performs a uniform rotation about the Z p axis with spin rate
� and instantaneous spin phase angle γ (t) = γ0 + �t relative to the
inertial (Xi , Zi ) frame with initial phase angle γ0. The spin rate �
about the Z p axis is positive and constant within the context of the
adopted assumptions.

On the basis of the geometry in Fig. 1 and the preceding results we
can express the sun vector Si of Eq. (2) in terms of its components
in the spacecraft principal (X p , Yp , Z p) frame,

Sp =

⎛⎜⎝Sp1

Sp2

Sp3

⎞⎟⎠ = [R(γ )] Si =

⎛⎝ sin βS cos γ (t)
− sin βS sin γ (t)

cos βS

⎞⎠ (6)

where [R(γ )] is the rotation matrix from the inertial to the spacecraft
principal frame,

[R(γ )] =

⎡⎣ cos γ (t) sin γ (t) 0

− sin γ (t) cos γ (t) 0

0 0 1

⎤⎦ (7)
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Fig. 2 Transformation from principal to geometric reference frames.

In a similar manner, the inertial representation of the Earth vector
Ei in Eq. (4) can be transformed to its components in the spacecraft
principal frame,

Ep =

⎡⎣E p1

E p2

E p3

⎤⎦ = [R(γ )] Ei =

⎛⎝ sin βE cos{γ (t) − α}
−sin βE sin{γ (t) − α}

cos βE

⎞⎠ (8)

At the instant tE when γ (tE ) equals α, we find Ep =
(sin βE , 0, cos βE )T as can be seen in Fig. 1.

C. Dynamic Imbalance
The dynamic imbalance [also known as coning (Wertz,4 p. 489)]

is one of the most significant bias errors affecting the attitude-
determination accuracy. The imbalance refers to the angular de-
viation between the following two reference directions (Fig. 2):
1) the actual or dynamic spin axis, which corresponds to the max-
imum or minimum principal axis of inertia, and 2) the geometric
spin axis or centerline, which represents the intended spin axis ori-
entation (during the design phase).

The mounting and alignment of the sensor units during pre launch
spacecraft integration are performed with reference to the spacecraft
geometric reference frame. During in-flight operations, however, the
spacecraft actually spins about the dynamic spin axis Z p . The offset
with the geometric spin axis alters the effective inertial pointing
direction of the sensors and contaminates the sensor measurements.

The transformation between the spacecraft geometric frame
(X, Y, Z ) and the principal reference frame (X p , Yp , Z p) will now
be described by the small Tait–Bryan rotation angles �ϕ1 and �ϕ2

followed by the phase angle ϕ3 (Fig. 2). The angles �ϕ1 and �ϕ2

represent the components of the projection of the geometric spin
axis Z within the plane normal to the dynamic spin axis Z p . These
angles are not known in actual practice; otherwise, an effort would
be done to eliminate them. Therefore, the biases �ϕ1 and �ϕ2 may
be reasonably modeled as normally distributed random variables
with expected values equal to zero. Their variances may be pre-
dicted from the expected precision of the prelaunch balancing tests
while also accounting for any in-flight error sources (in particular,
the imbalance induced by an asymmetric use of propellant in the
tanks).

The third rotation over ϕ3 is about the spacecraft geometric Z
axis and represents the phase angle of the geometric X axis with
respect to the principal X p axis. Also this angle may have a bias error
caused by limitations in the balancing precision. For spacecraft with
almost symmetric planar moments of inertia Ix ≈ Iy , the locations
of the planar principal axes are very sensitive to small variations in
the assumed mass model so that the phase angle ϕ3 can be relatively
large. Thus, the assumption that the angle ϕ3 is small may not be
justified in this case, and the angle ϕ3 may be reasonably modeled
as a random variable that may take any value within the interval (0,
360) deg.

The small rotations �ϕ1 and �ϕ2 are expressed by the rotation
matrices [R1] and [R2] and the rotation over the phase angle ϕ3 is
denoted by [R3],

[R1(�ϕ1)] =

⎡⎣1 0 0

0 cos �ϕ1 sin �ϕ1

0 − sin �ϕ1 cos �ϕ1

⎤⎦

≈

⎡⎣1 0 0

0 1 �ϕ1

0 −�ϕ1 1

⎤⎦ (9a)

[R2(�ϕ2)] =

⎡⎣cos �ϕ2 0 − sin �ϕ2

0 1 0

sin �ϕ2 0 cos �ϕ2

⎤⎦

≈

⎡⎣ 1 0 −�ϕ2

0 1 0

�ϕ2 0 1

⎤⎦ (9b)

[R3(ϕ3)] =

⎡⎣ cos ϕ3 sin ϕ3 0

− sin ϕ3 cos ϕ3 0

0 0 1

⎤⎦ (9c)

It is convenient to employ a polar notation with �ϕ denoting the
tilt angle between the geometric Z axis and the principal Z p axis
and ν representing an unknown fixed phase angle of the tilt angle
offset with respect to the X p axis (inset Fig. 2). Because �ϕ1 equals
−�ϕ sin ν and �ϕ2 = �ϕ cos ν, we have

�ϕ = {
(�ϕ1)

2 + (�ϕ2)
2
} 1

2 , ν = arctan{−�ϕ1/�ϕ2} (10)

The statistical properties of the tilt angle �ϕ follow nat-
urally from those of the individual imbalance components:
σ 2

ϕ = E{(�ϕ)2} = 2σ 2 with σ 2 = E{(�ϕ1)
2} = E{�ϕ2)}2. The tilt

phase angle ν is assumed to be uniformly distributed over the inter-
val (0, 360) deg. The small-angle approximations used in Eqs. (9a)
and (9b) are justified on the grounds that the tilt angle is very small
(typically, �ϕ < 0.1 deg).

The transformation from the principal to the geometric frame is
given by⎛⎝X

Y
Z

⎞⎠ = [R3(ϕ3)][R2(�ϕ2)][R1(�ϕ1)]

⎛⎜⎝X p

Yp

Z p

⎞⎟⎠

= [Rtilt(ϕ3, ν, �ϕ)]

⎛⎜⎝X p

Yp

Z p

⎞⎟⎠ (11)

The small-angle representation of the tilt matrix [Rtilt] follows from
Eqs. (9–11),

[Rtilt(ϕ3, ν, �ϕ)] ≈

⎡⎣ cos ϕ3 sin ϕ3 −�ϕ cos(ν − ϕ3)

− sin ϕ3 cos ϕ3 −�ϕ sin(ν − ϕ3)

�ϕ cos ν �ϕ sin ν 1

⎤⎦
(12)

Both ν and ν − ϕ3 have uniform probability distributions over the
interval (0, 360) deg. The arbitrariness in these angles has no im-
plications on the attitude-determination process because the instant
when the sun crosses the sensor meridian plane will be taken as the
reference for all sensor measurements [to be discussed following
Eq. (23)].

Finally, it can be shown that the rotation matrices defined in
Eqs. (9) are orthonormal (up to first-order terms) and may be in-
verted by transposing them. The same holds true for the matrix in
Eq. (12) because of the adopted small-angle model.
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D. Sensor Frame Within Geometrical Frame
The actual measurements produced by the Earth sun sensor are

carefully calibrated by dedicated laboratory tests. This ensures that
the measurement angles will be accurate to within a few hundredths
of a degree over the specified operating range of the sensor. The
calibration results effectively eliminate any sensor-internal mechan-
ical misalignments, as well as any systematic errors originating in
the electronics and processing units. The sensor calibration data are
referred to the sensor-fixed reference frame that is attached to the
reflecting cube mounted on top of the sensor box (Fig. 3). This cube
serves as the reference for the precise alignment of the sensor box
within the spacecraft reference frame during spacecraft integration.

Because of inherent limitations in the alignment precision and
other error effects, there may be a mounting misalignment (typically,
<0.1 deg) between the sensor box and the spacecraft geometric
reference frame. The pointing axis Xsb of the sensor box lies in
the spacecraft geometric (X, Y ) plane with nominal phase angle χsb

with respect to the spacecraft X axis (Fig. 4). The sensor alignment
biases that will be employed here are the three small angles �χ, �e,
and �i ,

1) The bias �χ designates the error in the equatorial mounting
angle χ . It consists of a rotation about the spacecraft geometric Z
axis resulting in the intermediate X1 and Y1 axes. The �χ angle can
be interpreted as an azimuth error in the sensor-pointing direction
within the (X, Y ) plane, which leads to constant offsets in all sun
and Earth sensor crossing times.

2) The bias �e models the error in the sensor-mounting alignment
in the direction normal to the spacecraft equatorial plane and is
described by a rotation about the negative Y1 axis resulting in the
new X2 and Z2 axes. This bias can be interpreted as an elevation
error in the sensor-pointing direction, which leads to an offset in the
intersection of the sun sensor meridian and skew slits and to biases
in the effective pencil-beam mounting angles, thereby affecting the
sun and Earth aspect angle measurements.

Fig. 3 Integrated Earth sun sensor.

Fig. 4 Sensor-mounting misalignment in spacecraft geometric frame.

3) The bias �i represents an inclination error in the sensor orien-
tation induced by a rotation about the sensor-pointing direction, that
is, axis X2 = Xsb. This bias leads to a change in the inclination of the
sun sensor slit plane, which affects the resulting sun aspect angle in
an intricate manner. It also affects the pencil-beam orientations and
the measurements of the sun–Earth dihedral angle.

The complete transformation (in first-order small angle approxi-
mation) from the spacecraft geometric reference frame (X, Y, Z ) to
the sensor reference frame (Xsb, Ysb, Zsb) may be formulated as⎛⎝Xsb

Ysb

Zsb

⎞⎠ = [Rsb(χsb, �χ, �e, �i)]

⎛⎝X
Y
Z

⎞⎠ (13)

The sensor misalignment matrix [Rsb] is defined by

[Rsb] = [Ri (�i)][Re(�e)][Rχ (χsb, �χ)] (14)

with

[Rχ (χsb, �χ)] =

⎡⎣ cos(χsb + �χ) sin(χsb + �χ) 0

− sin(χsb + �χ) cos(χsb + �χ) 0

0 0 1

⎤⎦ (15a)

[Re(�e)] =

⎡⎣ cos �e 0 sin �e
0 1 0

− sin �e 0 cos �e

⎤⎦ ≈

⎡⎣ 1 0 �e
0 1 0

−�e 0 1

⎤⎦ (15b)

[Ri (�i)] =

⎡⎣1 0 0

0 cos �i sin �i
0 − sin �i cos �i

⎤⎦ ≈

⎡⎣1 0 0

0 1 �i
0 −�i 1

⎤⎦ (15c)

An expansion of the matrix in Eq. (15a) for small angles �χ is
not necessary because the bias �χ appears only in combination
with the χsb angle. Therefore, we employ the new angular variable
χ̂sb = χsb + �χ . The sensor misalignment matrix [Rsb] takes now
the form

[Rsb(χ̂sb, �e, �i)]

≈

⎡⎣ cos χ̂sb sin χ̂sb �e
− sin χ̂sb cos χ̂sb �i

�i sin χ̂sb − �e cos χ̂sb −�i cos χ̂sb − �e sin χ̂sb 1

⎤⎦
(16)

Also this matrix is orthonormal within the small-angle approxima-
tions adopted here.

E. Sun Vector in Sensor Frame
To establish the measurement equations for the sun sensor we

must transform the sun vector Sp = (Sp1, Sp2, Sp3)
T from Eq. (6) to

the sensor reference frame (Xsb, Ysb, Zsb). The sun vector compo-
nents within the latter frame are written as Ssb = (Ssb1, Ssb2, Ssb3)

T .
The transformation follows from the results established in Eqs. (11–
16) and uses the sun vector components Sgeom = (SX , SY , SZ )T

within the intermediate spacecraft geometric frame,

Ssb =

⎛⎝Ssb1

Ssb2

Ssb3

⎞⎠ = [Rsb]

⎛⎝SX

SY

SZ

⎞⎠ = [Rsb][Rtilt]

⎛⎝Sp1

Sp2

Sp3

⎞⎠ (17)

F. Ideal Sun Vector
The sun vector Ssb may be split up in an ideal part, which holds

when the sensor biases �e and �i are absent, and a perturbing part
induced by the biases �e and �i ,

Ssb = Ssb, ideal + Ssb, pert (18)
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The ideal and perturbation parts of the matrix [Rsb(χ̂sb, �e, �i)]
follow from Eq. (16),

[Rsb, ideal(χ̂sb)] =

⎡⎣ cos χ̂sb sin χ̂sb 0

− sin χ̂sb cos χ̂sb 0

0 0 1

⎤⎦ (19a)

[Rsb, pert(χ̂sb, �e, �i)]

=

⎡⎣ 0 0 �e
0 0 �i

�i sin χ̂sb − �e cos χ̂sb −�i cos χ̂sb − �e sin χ̂sb 0

⎤⎦
(19b)

Also the tilt matrix [Rtilt(ϕ3, ν, �ϕ)] of Eq. (12) may be expanded
similarly,

[Rtilt, ideal(ϕ3)] =

⎡⎣ cos ϕ3 sin ϕ3 0

− sin ϕ3 cos ϕ3 0

0 0 1

⎤⎦ (20a)

[Rtilt, pert(ϕ3, ν, �ϕ)]

=

⎡⎣ 0 0 −�ϕ cos(ν − ϕ3)

0 0 −�ϕ sin(ν − ϕ3)

�ϕ cos ν �ϕ sin ν 0

⎤⎦ (20b)

The matrix [Rideal(ϕ3, χ̂sb)] equals the product of the matrices
[Rsb, ideal(χ̂sb)] and [Rtilt, ideal(ϕ3)] in Eqs. (19a) and (20a),

[Rideal(ϕ3, χ̂sb)] =

⎡⎣ cos(ϕ3 + χ̂sb) sin(ϕ3 + χ̂sb) 0

− sin(ϕ3 + χ̂sb) cos(ϕ3 + χ̂sb) 0

0 0 1

⎤⎦ (21)

The ideal sun vector in sensor frame coordinates follows now from
Eqs. (17) and (6),

Ssb, ideal =

⎛⎝Ssb1

Ssb2

Ssb3

⎞⎠
ideal

= [Rideal(ϕ3, χ̂sb)]

⎛⎝Sp1

Sp2

Sp3

⎞⎠

=

⎛⎝ sin βS cos γ̃ (t)
− sin βS sin γ̃ (t)

cos βS

⎞⎠ (22)

with

γ̃ (t) = γ (t) + ϕ3 + χ̂sb = γ̃0 + �t (23)

The angle γ̃ (t) describes the time-varying phase of the (Xsb,
Zsb) plane relative to the inertial Xi axis (Figs. 1–4) and
γ̃0 = γ0 + ϕ3 + χ̂sb. It is convenient to select the time origin as the
instant at which the sun vector crosses the (Xsb, Zsb) plane, which
coincides with the sun sensor’s meridian slit plane,

γ̃ (t) = �t → γ̃0 = γ̃ (t = 0) = 0, γ0 = −(ϕ3 + χ̂sb) (24)

G. Sun Vector in Presence of Biases
The perturbation term of the sun vector coordinates in the sensor

frame comes from Eq. (17),

Ssb, pert = [Rpert(χ̂sb, �e, �i, ϕ3, ν, �ϕ)]Sp (25)

with

[Rpert] ≈ [Rsb, ideal(χ̂sb)][Rtilt, pert(ϕ3, ν, �ϕ)]

+ [Rsb, pert(χ̂sb, �e, �i)][Rtilt, ideal(ϕ3)] (26)

The vector Ssb, pert can be calculated in explicit form from the results
in Eqs. (19) and (20),

Ssb, pert ≈⎛⎝ − cos βS(�ϕ cos χ̃ − �e)

cos βS(�ϕ sin χ̃ + �i)

sin βS{(�ϕ cos χ̃ − �e) cos γ̃ (t) + (�ϕ sin χ̃ + �i) sin γ̃ (t)}

⎞⎠
(27)

The angle χ̃ appearing here stands for

χ̃ = ϕ3 + χ̂sb − ν (28)

Geometrically, χ̃ represents the constant (but unknown) phase angle
between the sensor pointing direction Xsb and the projection of the
geometric Z axis on the principal (X p , Yp) plane (Figs. 1–4).

The result in Eq. (27) can be simplified by introducing a combi-
nation of the sensor alignment biases with the tilt angle components.
This is achieved by rotating the phase of the projected Z axis (Fig. 2)
to the sensor-pointing direction Xsb using the angle χ̃ ,

�ϕe = �ϕ cos χ̃ + �e, �ϕi = �ϕ sin χ̃ + �i (29)

Finally, the result for Ssb = Ssb, ideal + Ssb, pert can be rewritten in terms
of the generalized tilt matrix [T ] and the ideal sun vector in Eq. (22),

Ssb ≈ [I + T (�ϕe, �ϕi )]Ssb, ideal (30)

where I is the identity matrix and [T ] is defined by

[T (�ϕe, �ϕi )] =

⎡⎣ 0 0 −�ϕe

0 0 �ϕi

�ϕe −�ϕi 0

⎤⎦ (31)

H. Earth Vector in Presence of Biases
The expression for the instantaneous Earth vector E in terms of

its components in the sensor frame may be established similarly as
was done for the sun vector [Eq. (17)] by using the Earth vector
components Ep in Eq. (8),

Esb =

⎛⎝Esb1

Esb2

Esb3

⎞⎠ ≈ [Rsb(χ̂sb, �e, �i)]

⎛⎝EX

EY

EZ

⎞⎠

≈ [Rsb(χ̂sb, �e, �i)][Rtilt(ϕ3, ν, �ϕ)]

⎛⎝E p1

E p2

E p3

⎞⎠ (32)

After expanding the matrix-product in an ideal term and a perturba-
tion part, we find as in Eqs. (22–27),

Esb, ideal = [Rideal]Ep =

⎛⎝ sin βE cos{γ̃ (t) − α}
− sin βE sin{γ̃ (t) − α}

cos βE

⎞⎠ Ep (33a)

Esb, pert = [Rpert]Ep ≈⎛⎝ −�ϕe cos βE

�ϕi cos βE

sin βE {�ϕe cos[γ̃ (t) − α] + �ϕi sin[γ̃ (t) − α]}

⎞⎠ Ep (33b)

The final result for Esb = Esb, ideal + Esb, pert can be expressed in a
similar way as was done for Ssb in Eq. (30),

Esb ≈ [I + T (�ϕe, �ϕi )]Esb, ideal (34)
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Table 1 Summary of sun and Earth sensor measurements

Sun sensor Earth sensor

Sensor outputs Measurement 1 Measurement 2 Measurement 3 Measurement 4

Crossing designation Meridian Slit Skew Slit In (space–Earth) Out (Earth–space)
Crossing time t1 t2 t3 t4
Spin phase angle γ̃ j (t) γ̃1 = γ̃0 + �t1 γ̃2 = γ̃0 + �t2 γ̃in = γ̃0 + �t3 γ̃out = γ̃0 + �t4
Angular observations Reference γ̃2 − γ̃1 γ̃in − γ̃1 γ̃out − γ̃1
Matching attitude state Spin rate Sun angle Angle α − κ Angle α + κ

III. Sensor Measurement Model
A. Background and Approach

During each spacecraft spin revolution the following Sun and
Earth sensor measurements are generated3: 1) the time t1 when the
sun crosses the sun sensor’s meridian slit, 2) the time t2 when the
sun crosses the sensor’s skew slit, 3) the Earth sensor “in” crossing
time t3 (when the pencil beam crosses the Earth’s infrared horizon in
the space to Earth direction), and 4) the Earth sensor “out” crossing
time t4 (when the pencil beam crosses the Earth’s infrared horizon
from Earth to space).

The meridian slit crossing time t1 is used as the reference for
the other sensor measurements. Successive meridian slit crossing
times allow the calculation of the spin rate, which is needed for the
conversion of the observed crossing times into angular observations.
Table 1 summarizes the sensor measurements and their associated
attitude parameters.

The angles γ̃in = γ̃ (t3) and γ̃out = γ̃ (t4) represent the phase angles
of the pencil-beam in and out crossings relative to the inertial (Xi ,
Zi ) plane. The pencil-beam measurements that are actually used in
the attitude determination process are the rotation angles γ̃in − γ̃1

and γ̃out − γ̃1, which are referred to the occurrence of the meridian
slit pulse. This observation is immaterial in the ideal case but is
important when biases are acting because they introduce an offset
�γ̃1 in the actual occurrence of the sun meridian pulse.

The following approach will be adopted.
1) In the first step, the ideal situation, that is, in the absence of the

generalized biases �ϕe and �ϕi , is considered and the crossing con-
ditions are formulated in terms of Ssb,ideal and Esb,ideal. This produces
the ideal results for the crossing angles γ̃ j,ideal, for j = 1, . . . , 4.

2) Subsequently, the perturbed situation, that is, in the presence of
the biases �ϕe and �ϕi , is studied with inclusion of the terms Ssb,pert

and Esb,pert in the crossing conditions to model the changes in these
vectors induced by the biases. The crossing angle solutions are then
expressed as γ̃ j = γ̃ j,ideal + �γ̃ j with the small correction term �γ̃ j
accounting for the bias effects. Finally, the resulting crossing equa-
tions are solved by means of a first-order perturbation analysis for
�γ̃ j representing the offsets in the angular measurements induced
by the biases.

B. Sun Sensor Measurements
Meridian Slit Crossings

Sun crossings over the meridian slit of the sun sensor occur at
the instants when the sun vector coincides with the plane of the
meridian slit, that is, the (Xsb, Zsb) plane in Fig. 4. This occurrence
is expressed by the necessary condition that the normal n1 = Ysb to
the meridian slit plane (where 1 identifies the sun sensor’s meridian
slit) must be perpendicular to the sun vector at the crossing instant,

(n1 · Ssb) = (Ys · Ssb) = 0 (35)

In practice, there are additional constraints that must be satisfied for
the sun sensor to produce valid outputs. (Typically, the sun aspect
angle must be between about 60 and 150 deg.)

In the ideal case, the condition expressed by Eq. (35) together
with Ssb, ideal in Eq. (22) lead to the known trivial solution for the
meridian slit crossing angle,

sin βS sin γ̃ (t1,ideal) = 0 → γ̃1,ideal = γ̃ (t1,ideal) = 0, t1,ideal = 0
(36)

In practice, nonzero biases may be acting, and the more general
sun vector expressions in Eqs. (25–30) should be used. The meridian
slit crossing angle γ̃1 may be expanded in terms of the ideal solution
γ̃1,ideal plus a small correction term �γ̃1 caused by the biases. After
substituting this expansion into the crossing condition (35), we find
the small-angle result,

sin βS sin(γ̃1,ideal + �γ̃1) − �ϕi cos βS = 0 → �γ̃1
∼= �ϕi/ tan βS

(37)
This result represents the shift �γ̃1 in the meridian slit crossing
angle caused by the biases, and this shift must be taken into account
when analyzing the other measurements (Table 1).

It is evident from Eqs. (29) that the expected value of the cor-
rection term vanishes based on the fact that both biases �i and �ϕ
have expected values of zero. Because the phase angle ϕ3–ν is uni-
formly distributed over the interval (0, 360 deg) the angle χ̃ defined
in Eq. (28) also has a uniform distribution so the expected value of
(sin χ̃)2 = 0.5. The variance of the crossing angle �γ̃1 in result (37)
can, thus, be expressed in terms of the variances of the individual
biases,

σ 2
1 = E

{
(�γ̃1)

2
} = E{(�i)2 + sin2 χ̃(�ϕ)2}/ tan2 βS

= [
σ 2

i + 0.5σ 2
ϕ

]/
tan2 βS (38)

Skew Slit Crossings
The sun sensor skew slit has a nominal inclination angle of i

(which equals 28 deg for the sensor shown in Fig. 3) with respect to
the sensor (Xsb, Ysb) plane. The skew slit has the unit-normal vector
n2 defined by

n2 = cos iYsb + sin iZsb (39)

A necessary condition for the sun crossing the skew slit plane is
(n2 · Ssb) = 0, which implies that the sun vector must be perpendic-
ular to the skew slit normal at the crossing time. In the absence
of biases, the ideal sun vector expression in Eq. (22) produces the
following crossing angle:

γ̃2,ideal = arcsin(tan i/ tan βS) (40)

This result is meaningful because crossings over the skew slit are
not physically possible for a sun aspect angle βS outside the interval
i < βs < π . Note that the sign of γ̃2,ideal is defined by the quadrant
of the sun aspect angle.

When biases are present, the Ssb,pert term in Eq. (27) must be
carried along, and the skew slit crossing condition (n2 · Ssb) = 0
leads to the following implicit equation for γ̃2:

tan βS sin γ̃2 − tan i = �ϕi + tan i tan βS(�ϕi sin γ̃2 + �ϕe cos γ̃2)
(41)

When introducing the expansion γ̃2
∼= γ̃2,ideal + �γ̃2 of the crossing

angle in terms of the ideal crossing angle plus a small correction
term, and substituting the result of Eq. (40), we find the small-angle
result,

�γ̃2 ≈ �ϕe tan i + cos βS�ϕi/(S(βS, i) cos i) (42)

The function S(βS, i) is an abbreviation for

S(βs, i) =
√

sin2 βS − sin2 i (43)
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The square root is well defined for the physically meaningful interval
of sun angles i < βS < π − i .

The variance of �γ̃2 can be expressed in terms of the variances
of the individual biases,

σ 2
2 = E

{
(�γ̃2)

2
} = (

σ 2
e + 0.5σ 2

ϕ

)
tan2 i

+ (
σ 2

i + 0.5σ 2
ϕ

)
cos2 βS

/(
S2(βS, i) cos2 i

)
(44)

Sun Aspect Angle Bias
The biases in the sun sensor’s meridian and skew slit crossing

times affect the calculation of the sun aspect angle. During in-flight
operations, the sun aspect angle βS is calculated from the difference
between the crossing angles γ̃2 and γ̃1 as follows:

βS,calc = π/2 − arctan[sin(γ̃2 − γ̃1)/ tan i] (45)

After substituting the expansions for the slit crossing angles and the
result (36), we find

βS,calc ≈ π/2 − arctan[sin(γ̃2,ideal + �γ̃2 − �γ̃1)/ tan i] (46)

The effect of the biases on the resulting sun aspect angle can be
found by employing the expansion βS,calc = βS,ideal + �βS ,

�βS ≈ −[sin βS cos βS/ tan γ̃2,ideal](�γ̃2 − �γ̃1)

= [S(βS, i) sin βS/ cos i]�ϕe + (cos βS/ sin i)[S(βS, i)

− sin βS/ cos i]�ϕi (47)

The variance of the bias error of the solar aspect angle σ 2
S follows

from the statistical properties of the input biases,

σ 2
S = E

{
(�βS)

2
} = (

σ 2
e + 0.5σ 2

ϕ

)
[S(βS, i) sin βS/ cos i]2

+ (
σ 2

i + 0.5σ 2
ϕ

)
(cos βS/ sin i)2[S(βS, i) − sin βS/ cos i]2 (48)

C. Earth Sensor Measurements
The Earth sensor usually has two pencil beams with different

pointing directions μ1 and μ2. For illustration, we consider only
one pencil beam here. (Additional pencil beams can be treated in the
same manner.) The pencil-beam pointing direction p with (generic)
mounting angle μ (Fig. 5) has the following components in the (Xsb,
Zsb) plane:

p = sin μXsb + cos μZsb (49)

We assume that the Earth’s infrared radius Rir is perfectly spherical
with an instantaneous apparent radius ρ seen by the sensor from the
spacecraft’s orbital position r = r(t),

Fig. 5 Geometrical conditions of Earth sensor pencil-beam crossings.

ρ(r) = arcsin(Rir/r) (50)

The Earth-in and Earth-out crossing conditions of the pencil beam
follow from the fact that the angle between the pencil-beam pointing
direction and the Earth vector must be equal to the apparent Earth’s
infrared radius,

E · pin = cos ρin, E · pout = cos ρout (51)

The Earth vector E may be taken identical in these two expressions
because the time difference is only a fraction of a spin period. The
apparent Earth radii ρin and ρout refer to different locations on the
Earth’s infrared horizon so they may contain bias errors �ρin and
�ρout that could differ significantly (by up to a few tenths of a
degree).

Ideal Pencil-Beam Crossings
When substituting the pencil-beam pointing directions in Eq. (49)

and the ideal Earth vector Esb,ideal of Eq. (33a), we find the following
results from the in- and out-crossing conditions in Eqs. (51):

cos(γ̃in,ideal − α) sin βE sin μ + cos βE cos μ = cos ρin (52a)

cos(γ̃out,ideal − α) sin βE sin μ + cos βE cos μ = cos ρout (52b)

Figure 5 shows that the expressions in the brackets represent
the actual half-chord angles −κ and +κ , respectively, that is,
γ̃in,ideal = α − κ and γ̃out,ideal = α + κ with α the actual sun–Earth
dihedral angle.

Earth Crossing Biases
In the presence of biases the Earth vector within the sensor frame

will be perturbed as formulated by the result for Esb,pert in Eq. (33b).
The in and out crossing angles are now expanded as follows:

γ̃in = γ̃in,ideal + �γ̃in, γ̃out = γ̃out,ideal + �γ̃out (53)

After substituting these expressions into Eq. (52) and expanding for
small angles, we find

�γ̃in ≈ −(Esb,pert · p)/(sin κ sin βE sin μ) = �ϕi/ tan μ

+ �ϕe{1/(sin κ tan βE ) − 1/(tan κ tan μ)} (54a)

�γ̃out ≈ (Esb,pert · p)/(sin κ sin βE sin μ) = �ϕi/ tan μ

− �ϕe{1/(sin κ tan βE ) − 1/(tan κ tan μ)} (54b)

These results have singularities when κ vanishes corresponding to
the start and end of sensor coverage when the crossing sensitivities
to biases are extreme. This issue has no consequences because these
regions should not anyway be used for fine attitude determination
purposes.3

Infrared Radii Biases
The biases �ρin and �ρout describe the biases in the apparent radii

of the Earth’s infrared disk at the location of the pencil-beam cross-
ings. The expressions given in Eq. (53) are substituted in Eqs. (52).
This leads to the following first-order shifts in the pencil-beam cross-
ing angles induced by biases in the Earth’s infrared horizon:

�γ̃in ≈ −�ρin sin ρ/(sin κ sin βE sin μ) (55a)

�γ̃out ≈ �ρout sin ρ/(sin κ sin βE sin μ) (55b)

Half-Chord-Length Biases
During flight operations, the half-chord-angle angle κ is calcu-

lated from the measured in and out crossing angles (Table 1 and
Fig. 5),

κcalc = 1
2 (γ̃out − γ̃in) (56)

In fact, the measurements γ̃in and γ̃out are referenced to the time of
the sun sensor meridian slit crossing, which may be affected by the
bias error �γ̃1 given in Eq. (37). However, the latter bias acts in
exactly the same manner for the in and out crossing angles so that
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its effect on the calculation of κcalc cancels. Equations (54) and (55)
produce now the resulting �κ bias,

�κ = 1
2 (�γ̃out − �γ̃in) = �ϕe[1/ tan κ tan μ) − 1/ sin κ tan βE )]

+ 1
2 (�ρin + �ρout) sin ρ/(sin κ sin βE sin μ) (57)

Thus, the �ϕi bias has no effect on the chord-length calculation,
but a uniform error in the Earth’s infrared horizon definitely has an
effect.3,8

Sun–Earth Azimuth Angle Calculation
The angle γ̃c designates the mean value of the γ̃in and γ̃out

crossing angles and corresponds to the rotation angle at the time
when the center of the Earth’s disk coincides with the plane con-
taining the pencil beam and the spin axis (Fig. 5). This instant is
known as the chord-center crossing time and the angle γ̃c represents
the attitude state variable α, that is, the sun–Earth dihedral angle in
Figs. 1 and 5. During flight operations, the angle α is calculated from
the individual in and out crossing angle measurements as follows:

αcalc = γ̃c = 1
2 (γ̃in + γ̃out) (58)

In the absence of biases, the chord-center crossing angle αcalc would
be equal to γ̃c,ideal = 1

2 (γ̃in,ideal + γ̃out,ideal).
When biases are present, we expand γ̃c = γ̃c,ideal + �γ̃c and obtain

the error �α as the mean value of the errors in the individual in and
out crossings given in Eqs. (54) and (55). However, the effect in-
duced by the sun sensor meridian slit crossing bias �γ̃1 = �ĩ/ tan βS
established in Eq. (37) must be taken into account as well so that

�α = 1
2 (�γ̃in + �γ̃out) − �γ̃1 = �ϕi (1/ tan μ − 1/ tan βS)

+ 1
2 (�ρout − �ρin) sin ρ/(sin κ sin βE sin μ) (59)

Thus, the bias �ϕe has no effect on the calculation of the sun–Earth
dihedral angle. In the case when the pencil-beam mounting angle
equals the sun aspect angle, the bias �ϕi will also be ineffective.
The term containing the Earth’s infrared biases vanishes when the
biases �ρin and �ρout are taken equal, for example, when the bias
in the Earth’s infrared radius would be uniform.

IV. Propagation of Biases into Attitude Vector
We first summarize the propagation of the input biases (induced

by the dynamic imbalance, sensor misalignments, and Earth radius
errors) into the corresponding measurement angles. Subsequently,
the propagation of the biases will be extended to errors in the re-
sulting attitude solution. In practical applications, the magnitude
of the �e, �i , and �ϕ biases would be specified in the form of a
(Gaussian) probability density distribution with zero mean values
and prescribed worst-case (3-σ) deviations. The present section will
also address the propagation of the variances of the specified input
biases into the corresponding variances of the attitude vector.

A. Biases in Measurement Angles
The generalized biases �ϕe and �ϕi are defined by the angle χ̃

and the fundamental bias angles �e, �i , and �ϕ [Eqs. (28) and
(29)]: (

�ϕe

�ϕi

)
=

[
cos χ̃ −1 0

sin χ̃ 0 1

]⎛⎝�ϕ

�e
�i

⎞⎠ (60)

The fundamental biases �ϕ, �e, and �i are obviously independent
and may be assumed to be normally distributed with zero-mean
value. The angle χ̃ on the other hand is uniformly distributed. The
covariance terms of the derived biases �ϕe and �ϕi can be calcu-
lated as

σ 2
1 = E

{
(�ϕe)

2
} = 1

2 σ 2
ϕ + σ 2

e (61a)

σ 2
2 = E

{
(�ϕi )

2
} = 1

2 σ 2
ϕ + σ 2

i (61b)

By virtue of the adopted statistical characteristics of the biases �ϕ,
�e, and �i , it follows that �ϕe and �ϕi in Eq. (60) are uncorrelated
so that E{(�ϕe)(�ϕi )} = 0.

For simplicity, we assume here that the crossing biases of the
Earth’s infrared disk are identical, that is, �ρ = �ρin = �ρout. In
practice, seasonal effects, that is, the north–south thermal gradient,
may induce a sizeable difference in the biases �ρin and �ρout. The
effects of the biases on the measurement angles were established in
Eqs. (47), (57), and (59) and are summarized as⎛⎝�βS

�κ

�α

⎞⎠ = [B]

⎛⎝�ϕe

�ϕi

�ρ

⎞⎠ (62)

The matrix [B] is defined as

[B] =

⎡⎣b11 b12 0

b21 0 b23

0 b32 0

⎤⎦ (63)

with nonzero terms

b11 = − sin βS S(βS, i)/ cos i

b12 = (cos βS/ sin i)[S(βS, i) − sin βS/ cos i]

b21 = 1/(tan κ tan μ) − 1/(sin κ tan βE )

b23 = sin ρ/(sin κ sin βE sin μ)

b32 = (1/ tan μ − 1/ tan βS) (64)

Note that the b33 term has vanished because of the assumption that
�ρout equals �ρin.

The propagation of the covariances σ 2
1 , σ 2

2 , and σ 2
3 , which are

associated with the independent input biases �ϕe, �ϕi , and �ρ,
into those of the measurement angles �βS , �κ , and �α follows
from Eq. (62),

[C] = [B]

⎡⎣σ 2
1 0 0

0 σ 2
2 0

0 0 σ 2
3

⎤⎦ [B]T =

⎡⎣ σ 2
S σSκ σSα

σSκ σ 2
κ 0

σSα 0 σ 2
α

⎤⎦ (65)

The nonzero entries of [C] are

σ 2
S = b2

11σ
2
1 + b2

12σ
2
2 , σ 2

κ = b2
21σ

2
1 + b2

23σ
2
3

σ 2
α = b2

32σ
2
2 , σSκ = b11b21σ

2
1 , σSα = b12b32σ

2
2 (66)

B. Earth Aspect Angle Calculation
The bias in the Earth aspect angle �βE can in principle be cal-

culated from the bias �κ in the measured half-chord angle using
the more conventional form of Eqs. (52). In typical applications,3

there will be two pencil beams (with different mounting angles
μi , i = 1, 2) that have simultaneous coverage during the attitude-
determination interval. A minimum-variance solution of the Earth
aspect angle can be established by means of a linear combination
of the half-cord angles κi , i = 1, 2, measured by the two pencil
beams. This involves the linearizations of Eqs. (52) and the intro-
duction of weights defined by the respective sensitivity coefficients
fi = ∂βE/∂κi of each pencil beam during the relevant interval,

fi = sin βE sin μi sin κi/(cos βE sin μi cos κi − sin βE cos μi )

(i = 1, 2) (67)

In a similar way as in Eq. (6) of Ref. 3, we can express the bias �βE
in terms of the measurement biases �κi of each of the two pencil
beams,

�βE = g1�κ1 + g2�κ2 (68)
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with

gi = (1/ fi )
/(

1
/

f 2
1 + 1

/
f 2
2

)
(i = 1, 2) (69)

The two pencil beams also produce the two dihedral measurements
αi , i = 1, 2. Their biases should be combined into the resulting �α
bias using equal weights, that is, �α = 1

2 (�α1 + �α2).
We can now modify Eqs. (62) and (63) as follows:⎛⎝�βS

�βE

�α

⎞⎠ = [B̃]

⎛⎝�ϕe

�ϕi

�ρ

⎞⎠ =

⎡⎢⎣b11 b12 0

b̃21 0 b̃23

0 b̃32 0

⎤⎥⎦
⎛⎝�ϕe

�ϕi

�ρ

⎞⎠ (70)

The following matrix coefficients are modified relative to Eqs. (64):

b̃21 = g1[1/(tan κ1 tan μ1) − 1/(sin κ1 tan βE )]

+ g2[1/(tan κ2 tan μ2) − 1/(sin κ2 tan βE )]

b̃23 = g1 sin ρ1/(sin κ1 sin βE sin μ1)

+ g2 sin ρ2/(sin κ2 sin βE sin μ2)

b̃32 = 1
2 (1/ tan μ1 + 1/ tan μ2) − 1/ tan βS (71)

The covariance matrix in Eq. (65) must now be modified into

[C̃] = [B̃]

⎡⎣σ 2
1 0 0

0 σ 2
2 0

0 0 σ 2
3

⎤⎦ [B̃]T =

⎡⎣ σ 2
S σSE σSN

σSE σ 2
E 0

σSN 0 σ 2
N

⎤⎦
(72)

with the following updated entries compared to Eqs. (66):

σ 2
E = b̃2

21σ
2
1 + b̃2

23σ
2
3 , σSE = b11b̃21σ

2
1

σ 2
N = b̃2

32σ
2
2 , σSN = b12b̃32σ

2
2 (73)

C. Attitude Determination Bias
Subsequently, we analyze the effects of the measurement biases

on the attitude solution in a single-frame attitude determination pro-
cedure. The equations expressing the spin axis attitude Zp in terms
of the angles βS , βE , and α may be written as [Ref. 3, Eqs. (3)]

S · Zp = cos βS, E · Zp = cos βE

(S × E) · Zp = sin βS sin βE sin α (74)

It is most convenient to refer the single-frame attitude solution to
the quasi-inertial sun–Earth frame that is based on the instantaneous
sun and Earth vectors (Fig. 6). The X axis is along the sun vector S,
the Y axis is within the plane formed by the sun and Earth vectors
along the unit vector T = (E − cos ψS)/ sin ψ , and the third axis is

Fig. 6 Sun–Earth frame defined by sun and Earth unit vectors.

along the normal to the sun–Earth plane, N = (S × E)/ sin ψ . These
three axes form an orthogonal triad that can easily be transformed
to the geocentric J2000 reference frame by using the components
of the vectors S and E.

The measurement equations (74) may be written in the matrix
form

y = [H ]Zp (75)

The measurement vector y and the measurement matrix [H ] are
defined as

y = (cos βS, cos βE , sin βS sin βE sin α/ sin ψ)T (76)

[H ] =

⎡⎣ 1 0 0

cos ψ sin ψ 0

0 0 1

⎤⎦ (77)

Provided that the sun and Earth vectors are not collinear, that is,
ψ �= 0 and ψ �= 180 deg, the matrix [H ] can be inverted and the
single-frame attitude solution follows as

Zp = [H ]−1y (78)

with

[H ]−1 =
(

1

sin ψ

)⎡⎣ sin ψ 0 0

− cos ψ 1 0

0 0 sin ψ

⎤⎦ (79)

The following explicit components of the determined attitude vector
in the sun–Earth frame can now be calculated:
Zp = (cos βS sin ψ, cos βE

− cos ψ cos βS, sin βS sin βE sin α)T / sin ψ (80)
In the presence of the biases �βS , �βE , and �α, we would obtain
a slightly different perturbed attitude solution Zp,pert. An explicit
result for the error �Zp = Zp,pert − Zp in the determined attitude
can be constructed by means of a small-angle expansion of Eq. (80)
in terms of �βS , �βE , and �α,

�Zp ≈ [A](�βS, �βE , �α)T (81)

with

[A] =
(

1

sin ψ

)
⎡⎣ − sin ψ sin βS 0 0

cos ψ sin βS − sin βE 0

cos βS sin βE sin α sin βS cos βE sin α sin βS sin βE cos α

⎤⎦
(82)

It can be confirmed [with the help of Eq. (5)] that the vector Zp
in Eq. (80) satisfies the normality condition |Zp| = 1. However, the
perturbed attitude solution Zp,pert may violate the normality condi-
tion due to the bias effects and should be normalized. The attitude
error δatt is defined as the half-cone pointing angle deviation of the
perturbed attitude vector Zp,pert from the ideal attitude Zp . Because
the biases are small, the geometrical result δatt ≈ |�Zp| represents a
valid useful approximation,

δatt ≈ |�Zp| = {
(�βS, �βE , �α)[A]T [A](�βS, �βE , �α)T

} 1
2

(83)
After writing the elements of the matrix [A] in Eq. (82) as a jk ,
j, k = 1, 2, 3, we may express the variance of the attitude error in
terms of the variances defined in Eqs. (66) and (73),

σ 2
att = E

{
δ2

att

} = (
a2

11 + a2
21 + a2

31

)
σ 2

S + (
a2

22 + a2
32

)
σ 2

E + a2
33σ

2
N

+ 2(a21a22 + a31a32)σSE + 2a31a33σSN (84)
Finally, the attitude error can be expressed explicitly in the variances
of the fundamental biases σ 2

1 , σ 2
2 , and σ 2

3 with the help of the ex-
pressions in Eqs. (61), (64), (71), and (73). The variance in Eq. (84)
is useful for performing an evaluation of the expected attitude error
based on the known specifications of the input biases.
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V. Procedures for Reconstruction of Biases
The present model offers practical methods for reconstructing the

input biases on the basis of their signatures in the measurement resid-
uals. (These residuals denote the differences between the actually
realized measurements and the predicted measurements obtained
from a high-fidelity simulator using the determined attitude as in-
put.) The result in Eq. (70) may be interpreted in the sense that each
of the biases �ϕe, �ϕi , and �ρ induces effects on the angular mea-
surements that may actually be observable in the residuals (�βS)res,
(�βE )res, and (�α)res. Equation (70) may then be inverted to calcu-
late the input biases from the observed measurement residuals. As
an alternative procedure, the system in Eq. (62) may be used because
the residual (�κE )res represents a more direct measurement.

For illustration, we consider the case where there is only one
pencil beam and the Earth’s in and out crossing biases are assumed
to be identical. Equation (70) shows that all of the three biases can be
calculated successively from the measurement residuals as follows:

�ϕi,calc = (�α)res/b̃32, �ϕe,calc = [(�βS)res − b12�ϕi,calc]/b11

�ρcalc = [(�βE )res − b̃21�ϕe,calc]/b̃23 (85)

The residuals may be averaged over a relatively short interval (up
to 30 min) over which they (as well as the functions b̃ jk) remain
sufficiently steady.

When different biases are acting for the in and out crossings of
the Earth infrared disk (for instance, due to the north–south effect)
the results in Eq. (85) are not valid. Therefore, we consider now a
situation where the biases �ρin and �ρout are different (and we use
two pencil beams as well). The measurement relations in Eqs. (47),
(57), and (59) produce now five equations with six unknowns and
so unambiguous solutions can unfortunately not be constructed.
However, in the special case when �ϕe and �ϕi can be neglected
relative to �ρin and �ρout, the applicable in and out crossing biases
can be reconstructed for each of the two pencil beams i = 1, 2 as
follows:

�ρin,i ≈ [(�κi )res − (�αi )res]/b23,i

�ρout,i ≈ [(�κi )res + (�αi )res]/b23,i (86)

Afterwards, the hypothesis that �ϕe and �ϕi were indeed negligible
should be verified.

VI. Discussion of Results
The preceding results have been applied to the specific condi-

tions of the CONTOUR spacecraft that was launched into a highly
elliptical phasing orbit on 3 July 2002. The Earth sensor coverage
intervals occurred after apogee at an altitude range between about
70,000 and 35,000 km with Earth aspect angles decreasing from
about 70 to 50 deg (van der Ha et al.3).

A. Sun Aspect Angle Error
The calculation of the sun aspect angle can be adversely affected

by the biases �e, �i , and �ϕ [Eq. (47)]. Figure 7 shows the sensi-
tivities ∂βS/∂e and ∂βS/∂i of the calculated sun angle to elevation
and inclination biases as a function of the solar aspect angle. Four
additional results for the sensitivity ∂βS/∂ϕ of the sun angle to tilt
biases with χ̃ = 45, 135, 225, and 315 deg [Eqs. (29)] are shown in
Fig. 7. It is seen that the resulting error in the calculated sun angle
is at most equal to the relevant input bias itself.

B. Earth Aspect Angle Error
Figure 8 shows the effect of an elevation angle bias on the Earth

sensor half-chord measurements, as well as on the resulting Earth
aspect angle. The Earth aspect angle is obtained from two chord-
angle measurements using the method outlined in Eqs. (67–69). This
approach benefits the Earth aspect angle sensitivity ∂βE/∂ ẽ when
both pencil beams have simultaneous coverage. The error in the
Earth aspect angle over this interval is at most slightly larger than

Fig. 7 Sun angle sensitivity to elevation, inclination, and tilt biases.

Fig. 8 Earth sensor measurement sensitivities to elevation bias.

Fig. 9 Earth sensor measurement sensitivities to Earth radius bias.

the elevation bias even though the errors in the measured half-chord
angles vary widely.

Figure 9 shows the sensitivities of the Earth sensor measure-
ments to biases in the infrared Earth radius. We find that the Earth
aspect angle sensitivity ∂βE/∂ρ remains within the bounds −1.25
and +1.35 over the combined pencil-beam coverage interval. Note
that the bias error �βE vanishes at about 37.1 h. This is because the
two half-cord measurements have equal but opposite weights at this
time so the combined solution for the Earth aspect angle becomes
exact. (Note that the present results are based on equal biases in the
Earth infrared radii.)
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Table 2 Reconstruction of biases in the Earth radii

Half chords,a deg Chord centers,a deg Earth Radiib

(�κ1)res (�κ2)res (�α1)res (�α2)res �ρin,1 �ρin,2 �ρout,1 �ρout,2
−0.22 −0.12 0.03 −0.13 −0.20 0.01 −0.16 −0.19

After corrections for all four biases in Earth radii
0 0 0.07 −0.07 −0.06 0.06 0.06 −0.06

aObserved residuals. bReconstructed Biases.

Fig. 10 Attitude error sensitivities to elevation, inclination, and Earth
radius biases.

a)

b)

Fig. 11 Half chord residuals a) before and b) after correction of Earth
radii biases.

C. Attitude Determination Error
Figure 10 shows the sensitivities of the half-cone pointing error

of the single-frame attitude solution relative to the three input bi-
ases [Eqs. (81) and (82)]. The variations over time are caused by
the underlying geometry in terms of Earth aspect angle. It can be
concluded that the resulting sensitivities of the attitude error over
the combined sensor coverage interval are limited by 1.05, 0.7, and
1.5, respectively.

D. Results of Bias Reconstructions
Table 2 shows the results of the reconstruction of the Earth radius

biases by the model of Eqs. (86). There appears to be a systematic
elevation error �e of about −0.06 deg (which exhibits itself also in
the residual of the sun aspect angle) and so we can not reduce the
biases further than shown here using the model of Eqs. (86).

Figure 11a shows the residuals during the prime attitude deter-
mination interval between 36.9 and 37.4 h (CONTOUR, 13 August
2002). Figure 11b shows the significant reduction of the chord-angle
residuals after correcting for the reconstructed biases.

VII. Conclusions
A practical model is presented for describing the effects of biases

induced during spacecraft design, for example, dynamic imbalance
and sensor-mounting alignment errors, and by variations in the in-
frared Earth radius observed by the Earth sensor. The measurement
equations for the sun sensor meridian and skew slit crossings and for
the Earth sensor’s pencil-beams in and out crossings of the Earth’s
infrared disk are established. A first-order perturbation technique
is used for obtaining the angular measurements in the presence of
the relevant biases. The propagation of the biases into the result-
ing attitude solution is established through a realistic single-frame
attitude-determination procedure. The results are useful for predict-
ing the attitude-determination error on the basis of the input bi-
ases. Furthermore, if statistical information on the expected biases
is available, similar statistical properties may be calculated for the
expected attitude error. Finally, a few practical procedures for the
reconstruction of the biases from the observed measurement residu-
als are presented. The results have been applied to the conditions of
the CONTOUR spacecraft during its phasing orbits in August 2002.
In particular, the sensitivities of the sun and Earth sensor measure-
ments, as well as the attitude to the relevant biases are illustrated
and the reconstruction of the individual infrared Earth radius biases
is demonstrated.
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6Palimaka, J. J., Grisé, A. J., Burlton, B. V., and Overduin, J. M., “Elimi-
nation of Attitude Determination Error Constraints in Launch Windows for
Geosynchronous Missions,” AAS Advances in Astronautical Sciences, edited
by C. L. Thornton, R. J. Proulx, J. E. Prussing, and F. Hoots, Vol. 71, Univelt,
Inc., San Diego, CA, 1989, pp. 261–272.

7Sullivan, W. I., Paluszek, M. A., and Surka, D. M., “The Spin Axis
Attitude Determination Package,” AAS Advances in Astronautical Sciences,
edited by R. H. Bishop, R. D. Culp, D. L. Mackison, and M. Evans, Univelt,
Inc., San Diego, CA, 1999, pp. 503–522.

8van der Ha, J. C., “Equal Chord Attitude Determination Method for
Spinning Spacecraft,” Journal of Guidance, Control and Dynamics, Vol. 28,
No. 5, 2005, pp. 997–1005.


