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The attitude control of a spin-stabilized spacecraft is usually performed by a forced precession of the spin axis

produced by a series of pulsed thrust actuations. A sun sensor is used for the proper timing of the thrust pulses so that

the spin axis describes a rhumb-line path on the unit-sphere. The rhumb-line equations are derived from first

principles and are interpreted and visualized in geometrical terms. Thruster performance parameters (i.e., the

magnitude and centroid time of the thrust pulses) constitute the principal error sources governing the accuracy of the

maneuver. These errors affect the total maneuver path length and its inertial heading direction, that is, the rhumb

angle. An analytical model is constructed for describing the propagation of path-length and rhumb-angle errors into

the resulting attitude at the conclusion of the maneuver. Detailed simulations with relevance to actual spacecraft

applications have been performed to arrive at an understanding of the expected error magnification for different

maneuver input parameters and initial conditions. Finally, a model is also presented for the propagation of the

statistical characteristics of the input errors into the resulting error covariances of the final attitude parameters.

I. Introduction

S PIN stabilization is attractive for providing attitude pointing
stability during injection maneuvers performed by solid rocket

motors and bipropellant engines. This concept is usedwhen injecting
geostationary spacecraft from their transfer orbits into their
operational orbits. The same approach can also be employed for the
injection of a deep-space probe into its heliocentric trajectory
(Farquhar et al. [1]). Because the Launcher typically delivers the
spacecraft in an attitude orientation that is different from the one
required for the injection maneuver there will be a need to perform
attitude reorientation maneuvers. Furthermore, it may be advanta-
geous to perform orbit corrections during the preinjection Earth
phasing orbits for compensating the launch injection errors (Dunham
et al. [2]). In order that the onboard thrusters are able to deliver the
required �v’s, attitude maneuvers must be performed to point the
spacecraft in the proper inertial directions. For instance, in the case of
the CONTOUR mission, as many as 7 orbit and 12 attitude
maneuvers were performed during its 6 weeks of phasing orbits
(van der Ha et al. [3]).

The attitude control of a spin-stabilized spacecraft is typically
performed by a forced precession of the spin axis bymeans of a series
of pulsed thrust actuations synchronized with the spin rate. The
direction of the spin axis motion can be controlled (Williams [4]†) by
introducing a delay in the thrusterfirings relative to the sun pulse, that
is, the instant of the sun’s crossing over the sun sensor’s reference slit
[3]. The required delay time during the maneuver is calculated on-
ground and uplinked to the spacecraft alongwith the number of thrust
pulses and their firing durations. The resultingmotion of the spin axis
on the unit sphere under a constant delay angle follows a rhumb-line
or loxodrome path in spherical coordinates (e.g., Wertz [5], pp. 651–
654).

The rhumb-line maneuver concept has been used operationally by
numerous satellites since about 45 years. An overview of its original
implementation on geostationary communications satellites is given
in the patent ofWilliams [4] which dates back toApril 1960.A useful

model for the nutation buildup resulting from the axial thrust pulses
during a rhumb-line maneuver is presented in [6].‡It is found that the
maximum nutation angle is typically well below the one resulting
from a continuous axial (orbital) maneuver.

Sierer and Snyder [7] provide an overview of the operational
principles and the typical error sources relevant to the attitude
determination and attitude control of spin-stabilized spacecraft based
on their experiences with early communications satellites like
Syncom, Early Bird, Applications Technology Satellite, and
INTELSAT IIC. Furukawa [8] presents an analytical solution of the
Euler equations during a precession maneuver induced by a uniform
train of rectangular thrust pulses. He includes useful analytical
results on the propellant expenditure, potential spin rate variations, as
well as nutation effects. Hablani [9] describes a technique for
designing a rhumb-line precession controller using a series of
almost-periodic thrust pulses at a constant phase angle relative to the
sun. He advises to control the delay angle (between the sun sensor
pulse and thruster initiation) in order that any errors caused by spin
variations are eliminated. Furthermore, he presents a control scheme
for spacecraft with nonzero products of inertia with the objective to
damp the high-frequency nutation oscillations at the conclusion of
the maneuver.

Thruster performance characteristics, such as the effective
magnitude and centroid time of the thrust pulse, constitute the main
error sources affecting the accuracy of a rhumb-line attitude control
maneuver. Inertial directional errors in the maneuver path may also
be caused by timing offsets in the thrust pulses (induced, for instance,
by spin rate deviations). All of these error sources modify the
maneuver evolution in two independent ways, namely in terms of the
total maneuver path length and in its inertial heading direction on the
unit sphere. Typically, a thrust-level error leads directly to a
maneuver path-length error, whereas the remaining errors
predominantly affect the rhumb angle. Other maneuver errors may
be induced for example by thrust vector misalignments and errors in
the initial attitude knowledge but these are less significant for long
maneuvers.

The paper presents a direct derivation of the rhumb-line equations
from first principles and provides useful insights into the geometrical
characteristics of the maneuver path within the relevant reference
frames. The paper establishes a first-order analytical model for
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predicting the propagation of errors in the thrust level and in the
centroid angle of the thrust pulses into the resulting attitude pointing
error at the conclusion of the maneuver. The model includes also the
propagation of errors in the initial attitude estimate. Systematic
simulations with practical relevance to geostationary transfer orbits
and deep-space applications have been performed and the relevant
results have been summarized.

II. Spin Axis Attitude Control

A. Torque Expression

Attitude control of a spin-stabilized spacecraft can be performed
by one thruster (parallel to the spin axis) in a pulsed firing mode
synchronized with the spin rate. However, in order to eliminate
undesirable �v effects on the orbit, an even number of balanced
thrusters should be employed. Figure 1 provides an illustration of the
geometrical configuration of two balanced forcesF1 andF2 acting on
a spacecraft spinning about its z axis with spin vector !z.

The torque vector T resulting from the forces
Fj � �Fjx; Fjy; Fjz�T with associated lever arms rj � �rjx; rjy;
rjz�T , j� 1; 2; . . . ; n, may be expressed in terms of the components
�Tx; Ty; Tz�T in the spacecraft body frame �x; y; z� as follows:

T � �Tx; Ty; Tz�T �
Xn
j�1

frj � Fjg

with

Tx �
Xn
j�1

frjyFjz � rjzFjyg; Ty �
Xn
j�1

frjzFjx � rjxFjzg

Tz �
Xn
j�1

frjxFjy � rjyFjxg
(1)

We consider a spacecraft in a pure spin (i.e., in the absence of
nutation) about its major principal axis. The angular momentum
vector is given byH� Iz!z with Iz denoting the moment of inertia
and !z the spin vector, both along the principal body z axis. The
precession of the angular momentum vector is produced by the
torque components Tx and Ty that point normal to the spin vector,
whereas the componentTz leads to a change in spin rate. The spin rate
!z is usually assumed to remain constant during the preparation of
precession maneuvers, even though minor spin changes may result
from thrust-level fluctuations, misalignment effects, spin inertia
changes caused by propellant consumption, and by rate coupling
effects inherent in the Euler equations for triaxial spacecraft
(van der Ha [10]).

B. Spacecraft-Sun Frame

We introduce the instantaneous �xS; yS; zS� spacecraft-sun frame
defined by the spacecraft z axis (i.e., spin axis) and the sun direction
represented by the unit vector s (Fig. 2). Its zS axis is identical to the z-
axis and the xS-axis points along the intersection of the spacecraft

�x; y� plane and the plane formed by the spacecraft z axis and the sun
vector s. The �xS; yS; zS� frame can be considered frozen or quasi-
inertial during the course of one spin revolution, whereas the
spacecraft frame �x; y; z� in Fig. 2 rotates rapidly with the
spacecraft’s spin motion. The transformation matrix between the
�xS; yS; zS� frame and the J-2000 inertial reference frame �X; Y; Z�
follows from the components zj and sj (j� 1, 2, 3) of z and s along
the inertial X; Y; Z axes (# is the sun aspect angle, Fig. 2)

xS
yS
zS

0
@

1
A� 1

sin#

z1 cos#� s1 z2 cos#� s2 z3 cos#� s3
z3s2 � z2s3 z1s3 � z3s1 z2s1 � z1s2
z1 sin# z2 sin# z3 sin#

2
4

3
5 X

Y
Z

0
@

1
A
(2)

The apparent singularity has no practical relevance because a rhumb-
line maneuver makes no sense when the sun direction coincides with
the spin axis. The spacecraft-sun frame can be considered “frozen”
during each spin revolution (when assuming that the attitude change
during this interval is sufficiently small). Therefore, we may apply
Newton’s second law within this frame to calculate the attitude
change.After each spin period,we update the spacecraft-sun frame to
account for the effective change of the spin axis pointing direction.

C. Precession of Angular Momentum

Newton’s second law applied to rigid-body motion provides the
inertial rate of change of the angular momentum H under the
instantaneous torque vector T�t� acting normal to H:

T �t� � dH=dt�!p�t� �H�t� (3)

The instantaneous precession vector!p�t� is directed normal to both
the torque and angular momentum vectors and is ahead of the
rotating torque vector T�t� by 90 deg (Fig. 3).

The torque causes the angular momentum vector H to precess
along the vector �H�H�t��t� �H�t� � T�t��t during an
infinitesimal interval �t. In practice, the thrust interval has a finite
duration ton � t1 � t0 and the change in the angular momentum H
follows by integrating Eq. (3) over the thrust interval (Fig. 4):

H �t1� �H�t0� �
Z
t1

t0

T�t� dt�
Z
t1

t0

f!p�t� �H�t�g dt (4)

We introduce the averaged torque and precession rate vectors Tave

and !ave over the thrust interval ton � t1 � t0:

T ave � �1=ton�
Z
t1

t0

T�t� dt; !ave � �1=ton�
Z
t1

t0

!p�t� dt (5)

When the change in angular momentumH over the thrust interval is

Fig. 1 Illustration of torque produced by 2 balanced thrusters. Fig. 2 Frozen spacecraft-sun frame �xS; yS; zS�.
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sufficiently small, we can express Eq. (4) as

H �t1� �H�t0� � Taveton � �!ave �H0�ton (6)

The vectors Tave, !ave, and H0 �H�t0� are perpendicular to one
another and the averaged precession rate is

!ave � j!avej � jTavej=jH0j (7)

The initial value jH0j equalsH0 � Iz!z in the absence of nutation at
time t0.

D. Change in Attitude

The precession of the angular momentum H leads to a nutation
effect whereby the instantaneous spin axis pointing direction
deviates from the angularmomentumvector.Analyticalmodels [6,8]
for the buildup of nutation during pulsed attitude maneuvers indicate
that themaximumnutation angle remains relatively small in practice.
In the case of a spacecraft spinning about its maximum inertia axis,
the spin axis will align itself passively along the new angular
momentum vector at the conclusion of the maneuver due to internal
energy dissipation (Kaplan [11], Sec. 2.5). The alignment of the
spacecraft z axis with the new angular momentum vector represents
the effective change in the spacecraft attitude orientation. In the case
of a spacecraft spinning about its minor axis of inertia, an active
nutation control devicemust be employed to ensure that the spin axis
pointing remains close to the angular momentum vector.

The effective change�z in the inertial orientation of the spin axis
over the thrust interval may thus be taken proportional to the change
in the angular momentum vector H given in Eq. (6):

�z� z�t1� � z�t0� � �!ave � z0�ton (8)

The notation�z suggests that the change in attitude during one spin

revolution may be considered infinitesimal. When using the
definition of !ave in Eqs. (5), we find

�z�
Z
t1

t0

f!p�t� � z0g dt�
Z
t1

t0

f!y�t�x�t� � !x�t�y�t�g dt (9)

The rates!x�t� and!y�t� represent the components of the precession
vector!p�t� along the (rotating) body unit vectors x�t� and y�t� and
can be expressed in the instantaneous torque components using
Eq. (3):

!x�t� � �Ty�t�=H0; !y�t� � Tx�t�=H0 (10)

In the present model we assume an ideal thrust profile so that the
thrust level rises instantaneously from 0 to the full forceF at the time
t0 and drops back to 0 at the instant t1. Also we assume that the thrust
forces are equal for all activated thrusters and that the forcesmaintain
a constant magnitude throughout the thrust interval (with a typical
duration of at most 500 ms). These simplifying assumptions are not
restrictive from a practical point of view because the thrust pulse
profiles can usually bemodeled fairly realistically by a representative
constant thrust profile and an associated centroid time. Under the
conditions of this model, the precession components!x�t� and!y�t�
in Eqs. (10) remain constant throughout the thrust interval ton �
t1 � t0 and vanish outside this interval.

The attitude change �z can be expressed in inertial components
by using the transformation between the spacecraft body frame
�x; y; z� and the spacecraft-sun frame �xS; yS; zS�; see Figs. 2 and 4:

x
y
z

0
@

1
A�

cos ’�t� sin ’�t� 0

� sin’�t� cos’�t� 0

0 0 1

2
4

3
5 xS

yS
zS

0
@

1
A (11)

This result involves the spin phase angle ’�t� � !z�t � t0� where t0
represents the instant at which the two frames coincide and !z is the
constant spin rate. The components of the attitude change along the
frozen xS and yS axes follows now from Eq. (9):

�z�
Z
t1

t0

f!y cos ’�t� � !x sin ’�t�gxS

� f!y sin ’�t� � !x cos’�t�gyS dt (12)

When introducing the centroid angle ’c � ’�tc� for the spin phase
angle relative to the xS axis at the centroid time tc (Fig. 4), we find the
following result after explicit integration over the thrust interval
�t0; t1�:

�z���fcos�’c � ��xS � sin�’c � ��ySg (13)

The angle � � tan�1fTy=Txg denotes the fixed orientation of the
torque vector within the body frame (Fig. 4) and �� is the angular
path over which the attitude vector rotates under the torque produced
by the thrust pulses

��� j�zj � fg!pton � fg�T=H0�ton (14)

The “geometric factor” fg � fsin�’on=2�g=�’on=2� represents the
efficiency loss caused by the extended thrust interval ’on in
comparison to an instantaneous impulsive pulse at the time tc. For
thrust intervals ’on shorter than 90 deg, fg is larger than 0.9.
Obviously, for a very short thrust pulse (i.e., ton ! 0) fg approaches
the value for an impulsive thrust, that is, fg ! 1.

III. Rhumb-Line Attitude Maneuver

A. Rhumb Angle

Figure 2 shows the �p; q; s� framewith thep axis perpendicular to
the s axis (i.e., the sun direction) within the spacecraft-sun plane
�xS; yS�. The q axis is normal to the spacecraft-sun plane and
completes the triad �p; q; s�:

Fig. 3 Inertial precession of angular momentum vector.

Fig. 4 Torque and precession vectors during thrust interval.
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A (15)

We introduce the heading or rhumb angle �� ’c � � � �=2 and
express the attitude change of Eq. (13) in terms of its components
along the unit vectors p, q, s:

�z���f� sin�xS � cos� ySg
���f� sin� cos#p� cos�q� sin� sin# sg (16)

The angle # is the instantaneous sun aspect angle of the attitude
vector z (Fig. 2). The heading angle � represents the direction of the
attitude maneuver relative to the local sun cone (i.e., the locus of
attitude vectors with constant sun aspect angles) (Fig. 5). The angles
�� and�may be visualized as the “polar coordinates” of the attitude
change �z projected on the unit-sphere near the attitude vector z.

For illustration, we consider the case ’c � �� 180 deg which is
close to the geometry shown in Fig. 4. In this case, �� 90 deg and
the attitude moves in the direction of the�xS axis toward the sun. In
general, a heading angle of �� 0 or 180 deg represents attitude
motion along the sun cone, whereas for ���90 deg the attitude
moves toward or away from the sun.

The spin axis can be moved in any desired direction by selecting
the appropriate centroid phase angle ’c for the phasing of the thrust
pulses. In practice (e.g., van der Ha et al. [3]), this is achieved by
setting the appropriate delay for the initiation of the thrust pulses
relative to the sun sensor reference pulse (i.e., the instant when the
sun crosses the sun sensor meridian slit). This delay time controls the
inertial direction of the torque vector and thus also the heading angle
of the spin axis relative to the sun cone.

B. Rhumb-Line Geometry

When the delay angle between the initiation of the thrust pulses
and the sun’s reference pulse remains constant during the maneuver,
the attitude vector will describe a so-called “rhumb line” on the
celestial sphere (Wertz [5], pp. 651–654). In this case, the torque and
precession vectors maintain fixed angles with the xS axis of the
spacecraft-sun plane (Fig. 4) so that the path of the attitude vector
intersects the successive sun cones at a constant heading angle.

Figure 5 illustrates the general geometry of a rhumb-line
maneuver showing the initial and final attitude vectors. The “initial
sun frame” (ISF) is defined by the sun vector s and the initial attitude
vector z� zi at the maneuver start time ti. This frame is identical to
the �p; q; s� frame in Fig. 2 at the time ti. The ISF frame plays an
important role in the maneuver modeling and a new designation
�Xi; Yi; Zi� will be introduced for this frame.

The �Xi; Yi; Zi� frame can be considered “inertial” for all practical
purposes because the apparent motion of the sun in inertial space of

about 0:04 deg =hr may be considered small in view of the fact that
attitude maneuvers typically have a duration of less than an hour.
Thus, the error induced by the sunmotionwould be below0.01 deg at
the start and end of a maneuver of 0.5 hr duration (note that the sun
position is taken at the midtime of the maneuver). If maneuvers of a
longer duration need to be performed, the maneuver model may be
broken up in a number of smaller individual maneuver legs of
perhaps 10 to 30 min, each with its own sun position.

With the help of the transformationmatrix in Eqs. (A2) and (A3) in
the Appendix we can express any arbitrary attitude vector � in its
components in the �Xi; Yi; Zi� frame using the spherical coordinates
# and � (Fig. 5):

� � �sin# cos �; sin# sin �; cos#�T � 	T
z� 	T
�z1; z2; z3�T
(17)

The sun aspect angle# is associatedwith the vectorz and � represents
the azimuth angle of z with respect to the �Xi; Zi� plane, that is, the
plane defined by the sun vector s and the initial attitude vector zi. For
convenience and with no loss of generality, we take ��ti� � 0 so that
the components of the initial attitude vector zi in the ISF frame are

� i � ��i1; �i1; �i3�T � �sin#i; 0; cos#i�T � 	T
zi (18)

The final attitude vector zf � z�tf� with spherical coordinates #f
and �f is also shown in Fig. 5.

C. Attitude Change due to Single Thrust Pulse

By differentiating Eq. (17) we can express the general attitude
change�� after a thrust pulse in terms of the changes in the spherical
angles �# and �� within the ISF frame:

���
�# cos# cos � ��� sin# sin �
�# cos# sin ���� sin# cos �

��# sin#

0
@

1
A (19)

The changes in the spherical angles # and � during an attitude
maneuver can be determined in explicit terms by comparison of
Eq. (19) with the dynamical result in Eq. (16). This involves the
transformation of the “local“ �p; q; s� frame, which is attached to
the instantaneous attitude vector z, into the inertial ISF reference
frame

p
q
s

0
@

1
A�

cos � sin � 0

� sin � cos � 0

0 0 1

2
4

3
5 Xi

Yi
Zi

0
@

1
A (20)

The equality of the rows in Eq. (19) and the transformed components
in Eq. (16) produces the relationships

���
�# cos# cos � ��� sin# sin �
�# cos# sin ���� sin# cos �

��# sin#

0
@

1
A

���
� sin� cos# cos � � cos� sin �
� sin� cos# sin �� cos� cos �

sin� sin#

0
@

1
A

(21)

The third row yields the functional relationship between�# and��
and the first two rows can be combined to produce the connection
between �� and ��:

�#���� sin� (22a)

����� cos�= sin# (22b)

These results express the angular changes in the spherical
coordinates# and � of the spin axis attitude in terms of the path length
�� and the rhumb angle �which are associated with the maneuver’s
dynamical characteristics.Fig. 5 Rhumb-line maneuver in initial sun frame (ISF) �Xi; Yi; Zi�.
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D. Attitude Change After Full Maneuver

The resulting attitude change after the full maneuver consisting of
N thrust pulseswill be calculated by adding the effects induced by the
individual thrust pulses. When summing the contributions of
Eqs. (22) for k� 1; 2; . . . ; N we obtain the changes in the sun aspect
angle and in the azimuth angle

XN
k�1

��#k� � �
XN
k�1

���k sin�k� (23a)

XN
k�1

���k� �
XN
k�1

���k cos�k= sin#k�1� (23b)

The summation terms on the left-hand sides of Eqs. (23) are equal to
the total cumulative changes in sun aspect angle and in the azimuth
angle, that is, #f–#i and �f–�i, respectively. Although Eqs. (23)
allow for a varying rhumb angle throughout the maneuver, here we
consider only a constant rhumb angle �� �k for k� 1; 2; . . . ; N.
After substituting from Eq. (23a) into Eq. (23b) we can eliminate the
maneuver path length �f �

P
N
k�1���k� and obtain

�f � �i �
XN
k�1

���k� � �
XN
k�1

��#k= sin#k�1�= tan� (24)

This result accommodates different individual path lengths��k (for
k� 1; 2; . . . ; N), which may be induced by variations in the thrust
level over the maneuver.

The change �#k in the sun aspect angle over each thruster pulse
will be interpreted as infinitesimal so that Eq. (24) may be integrated
over the maneuver interval

�f � �i � lim
��!0

�
�
XN
k�1

��#k= sin#k�1�= tan�
�

��
Z
#f

#i

�1= sin#�d#= tan� (25)

After performing the integration we find the familiar result for a
rhumb-line maneuver [Wertz [5], p. 654, Eqs. (19–62)]:

y�#f� � y�#i� � � tan���f � �i� (26)

with the logarithmic function y�#� defined by

y�#� � ln 	tan�#=2�
 (27)

The result in Eq. (26) has the form of a straightforward linear
expression between the function y�#� and the azimuth angle � with
the slope determined by the heading angle �. The function �y�#�
represents a conformal mapping which is known as the Mercator
projection and is widely used for mapping a spherical surface onto a
flat surface (Wertz [5], p. 653). The angle � represents the constant
heading angle of the maneuver path relative to the successive solar
latitude parallels (i.e., the loci of constant sun aspect angle) on the
unit-sphere with the sun at its pole (Fig. 5). The slope � is positive in
case #i > #f and negative for #i < #f.

It should be noted that the result in Eq. (26) has a mathematical
singularity when the attitude vector is aligned with the sun vector (i.
e., when the sun angle #� 0 or 180 deg). In this special case the
rhumb-line model becomes indeterminate and can not be used.

E. Maneuver Path-Length

The actualmaneuver path-lengthmagnitude�f consists of the sum
of the individual path lengths ��k resulting from each of the k�
1; . . . ; N thruster pulses building the rhumb-line path. By direct
integration of Eq. (23a) over the full range of solar aspect angles
during the maneuver, we find

�f � lim
��!0

XN
k�1

f��kg � �
Z
#f

#i

fd#g= sin����#f � #i�= sin�

(28)

Because #f < #i for sin� > 0 (and vice versa), the path length �f is
always positive. When �� 0 or 180 deg the maneuver path is along
the sun cone and the result in Eq. (28) becomes singular (these cases
will be addressed in Sec. V).

A rhumb-line path follows a great-circle path only when the angle
� is equal to 0,�90 deg, or 180 deg. In the case of a small maneuver
a rhumb-line maneuver is remarkably close to a great circle in terms
of path-length distance. Also for relatively large maneuvers the
maneuver path lengths is usually less than 10% longer than the
shortest (great-circle) distance between the initial and target attitude
vectors. However, differences in respective path lengths ofmore than
15% can occur as well. In practical maneuver applications, the fact
that a great-circle maneuver arc is shorter than a rhumb line’s path
length carries less weight than the rhumb line’s ease of
implementation.

IV. Error Propagation Model

A. Relevant Error Sources

Thruster performance and alignment characteristics constitute the
principal error sources affecting the execution of an attitude
maneuver, in particular:

1) Errors in the delivered thrust level
2) Offsets in the centroid time of the thruster pulses
3) Thruster mounting alignment errors
4) Thrust vector directional errors
These errors affect themaneuver execution in twoways, namely in

terms of the total maneuver path length �f and in terms of the
effectivemaneuver heading direction represented by the angle�. The
thrust level of noncalibrated thrusters may be off by up to 10% and
act in the “along-track” direction so that the maneuver’s path length
is affected. The thrust-level error may be reduced to 1 to 2% by
careful in-orbit calibration. On the other hand, the other error sources
predominantly result in “cross-track” errors and lead to a divergence
of themaneuver path from its intended direction. This corresponds to
an error in the maneuver’s heading direction or rhumb angle.

Another important error source (which is not addressed explicitly)
originates from a deviation in the actual spin rate relative to the
expected spin rate. These errors may arise from an offset in the actual
initial spin rate compared with the one used in the maneuver
preparation but also from unexpected spin variations occurring
during the maneuver. They affect the selected delay angle between
the sun sensor pulse and the initiation of the thruster firings and lead
to an error in the effective rhumb angle of the maneuver path.

The model does account for estimation errors in the initial attitude
zi that propagate into the target attitude zf.

B. Error Propagation Concept

The rhumb-line maneuver equations offer a number of intricate
relationships between the variables involved. To arrive at a
consistent error propagationmodel wemust identify the independent
variables as well as the associated error propagation paths. On the
basis of the two different types of errors presented in the previous
section, we select the maneuver path length � (representing the
thrust-level performance) and the maneuver heading angle �
(representing the effective thrust centroid time) as the fundamental
independent variables affecting the maneuver performance.
Additional independent variables are the initial conditions
represented by the spherical position coordinates �i and #i.

During the maneuver preparation, a rhumb-line path with the
proper heading angle � is determined that leads from the nominal
starting attitude zi to the desired target attitude zf. In other words, the
ISF coordinates are transformed into the final ones, that is,
��i; #i� ! ��f; #f�. This is accomplished by implementing the
appropriate number of thruster pulses and by selecting the required
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heading angle value �. An error in either the effective thrust level or
in the rhumb-angle affects the length or the direction of the
maneuver, respectively. In those cases, instead of reaching the
designated nominal target zf, the maneuver will end up at a different
point zf � �zf on the unit sphere with ISF coordinates
��f � ��f; #f � �#f�. Furthermore, the initial attitude vector zi
used in the maneuver preparation may well be different from the
actual attitude at the start of the maneuver; that is, zi � zi � �zi so
that the initial state is actually ��i � ��i; #i � �#i� instead of ��i; #i�.

The equations that will be employed for analyzing the error
propagation over the maneuver path are taken from Eqs. (26–28) but
are written in a form that emphasizes the functional dependencies

#f��f; �; #i� � #i � �f sin� (29a)

�f��f; �; #i; �i� � �i � fy�#f� � y�#i�g= tan� (29b)

The function y�#� stands for ln 	tan�#=2�
. It should be noted that the
dependence of �f on �f, �, and #i in Eq. (29b) contains “hidden”
implicit terms because of the relationship #f � #f��f; �; #i� defined
by Eq. (29a).

C. Effect of Path-Length Error

The propagation of a path-length error ��f into the final solar
aspect angle #f follows from Eq. (29a):

�#f � f@#f=@�fg��f with @#f=@�f �� sin� (30)

In the casewhen�� 0 or 180 deg, themaneuver path follows the sun
cone (i.e., the latitude parallel with the sun at the pole, see Fig. 5) so
that the final sun aspect angle #f is insensitive to a path-length error.
On the other hand, when ���90 deg, the path moves toward or
away from the sun direction and the error �#f will be identical in
magnitude to the path-length error.

The effect of a path-length error on the resulting final azimuth
angle �f can be established from Eq. (29b). When accounting for the
implicit dependency of #f on the path length �f through Eq. (29a),
we find

��f � f@�f=@yfgf@yf=@#fgf@#f=@�fg��f
� f�1=�tan��gf1= sin#fgf� sin�g��f
! @�f=@�f � cos�= sin#f (31)

When �� 0 or 180 deg the angle �f will be affected by a path-length
error (Fig. 5). On the other hand, when ���90 deg the angle �f
will be insensitive to a path-length error. More details on these
special cases will be given in Sec. V.

D. Effect of Rhumb-Angle Error

The effect of a rhumb-angle error �� on the final solar aspect angle
follows from Eq. (29a):

�#f � f@#f=@�g�� with @#f=@����f cos� (32)

The propagation of a rhumb-angle error �� into the final azimuth
angle �f contains an explicit aswell as an implicit part and is obtained
from Eq. (29b) through a chain of partial derivatives:

��f � f@�f=@�g��� f@�f=@yfgf@yf=@#fgf@#f=@�g��
� F��f; �;#i��� (33a)

with

F� �fcos
2�=�sin� sin#f� � �yf � yi�=sin2� (33b)

The apparent singularity in the case when sin� vanishes will be
addressed in Sec. V.

E. Effect of Initial Attitude Error

The propagation of an error �#i in the initial sun aspect angle #i
into the final sun angle #f is straightforward, namely �#f � �#i
because @#f=@#i � 1 from Eq. (29a). The effect of �#i on �f can be
established by a chain of partial derivatives applied to Eq. (29b):

��f � f@�f=@yigf@yi=@#ig�#i
� f@xf=@yfgf@yf=@#fgf@#f=@#ig�#i � G��f; �;#i��#i (34a)

with

G� �1= sin#i � 1= sin#f�= tan� (34b)

An error in the initial azimuth angle �i does not affect #f but does
have an effect on �f with ��f � ��i as can be seen from Eqs. (29).

F. Resulting Final Attitude Error

The “attitude error” refers to the angular half-cone angle (or arc-
length distance on the unit sphere) between the desired target attitude
unit vector zf and the actually achieved unit vector zf � �zf at the
conclusion of the maneuver. In the linear or first-order error model
considered here, the attitude error may be represented by the length
of the attitude difference vector j�zfj.

The attitude error can be expressed in terms of the angular errors
j�#fj and j��fj bymeans of the result of the attitude vector in terms of
the ISF coordinates given in Eq. (A4) of the Appendix

j�zfj � j��fj � fj�#fj2 � j��fj2sin2#fg1=2 (35)

It is evident that the initial attitude error is given by

j�zij � j��ij � fj�#ij2 � j��ij2sin2#ig1=2 (36)

Because all of the vectors zi, zf, zi � �zf, and zf � �zf lie on the
unit sphere, the difference vectors �zi and �zf point normal to the
vectors zi and zf, respectively (within the linear model used here).
This property can readily be confirmed in terms of the ISF
coordinates, for instance by means of Eq. (21).

With the help of the results for �#f and ��f of Eqs. (30–34)wefind

j�#fj2 � j�#ij2 � sin2�j��fj2 � ��f cos��2j��j2 (37a)

j��fj2 � j��ij2 � G2j�#ij2 � �cos�= sin#f�2j��fj2 � F2j��j2
(37b)

With the help of these expressions, we obtain the result for the
attitude error j�zfj from Eq. (35):

j�zfj � f�1� G2sin2#f�j�#ij2 � sin2#fj��ij2 � j��fj2
� ��2fcos2�� F2sin2#f�j��j2g1=2 (38)

This result for j�zfjmay be rewritten in terms of the initial attitude
error j�zij of Eq. (36) but remnants of the j�#ij and j��ij terms will
remain in the result which defeats the purpose. Furthermore, it makes
good sense to use the j�#ij and j��ij terms instead of j�zij because of
their different error characteristics. The angle #i is usually measured
very accurately by a sun sensor, whereas the azimuth angle �i follows
from less precise Earth sensor measurements. Thus, the error j�#ij is
significantly smaller than the error j��ij and this distinction would be
obfuscated by the use of the initial attitude error j�zij.

The individual dependencies of the attitude error on the four
selected independent variables (when considered in isolation) are
given by

@j�zfj=@j�#ij � f1� G2sin2#fg1=2
@j�zfj=@j��ij � sin#f; @j�zfj=@j��fj � 1

@j�zfj=@j��j � f�2fcos2�� F2sin2#fg1=2
(39)

The result @j�zfj=@j��fj � 1 indicates that, when the path-length
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error j��fj is considered in isolation, it induces an error j�zfj in the
final attitude that is identical to j��fj itself. This result may look odd
because the length of the rhumb line between the maneuver start and
end points is in general different from the corresponding great-circle
arc-length distance between these two points. The apparent
inconsistency originates from the inherent linearization of all error
effects due to the use of only first-order differential terms. Table 1
summarizes the error propagation results.

G. Propagation of Error Statistics

The results presented above can be employed in covariance
analyses for propagating the error statistics of the independent
variables into the statistical properties of the achieved final attitude.
In particular, if we have specific knowledge about the input error
variances associated with the independent variables #i, �i, �f, and �,
that is

	2#i � Ef��#i�2g; 	2�i � Ef���i�2g
	2�f � Ef���f�2g; 	2� � Ef����2g (40)

we can calculate the variances at the conclusion of the maneuver by
means of Eqs. (37):

	2#f � Ef��#f�2g � 	2#i � sin2�	2�f � ��f cos��2	2� (41a)

	2�f � Ef���f�2g � 	2�i �G2	2#i � �cos�= sin#f�2	2�f � F2	2�

(41b)

The formal calculation of the variance of the final attitude vector is
more complicated because it involves the establishment of the three-
dimensional covariance matrix of the attitude vector. This can be
done most conveniently in terms of components in the ISF frame
�Xi; Yi; Zi� in Fig. 5:

	cov��f�
 � Ef���f����f�Tg �
c11 c12 c13
c12 c22 c23
c13 c23 c33

0
@

1
A (42)

This covariance matrix may be transformed in the inertial
components of the attitude vector by using the transformation matrix
in Eq. (A2) of the Appendix. The error differential ��f in the ISF
reference frame is obtained similarly as in the derivation of Eq. (21)
except that �#f and ��f are now �#f and ��f, respectively:

��f �
�cos#f cos �f��#f � �sin#f sin �f���f
�cos#f sin �f��#f � �sin#f cos �f���f

��sin#f��#f

0
@

1
A (43)

When assuming that the cross-correlation term Ef��#f����f�g is
relatively small, the entries in the covariance matrix 	cov��f�
 of
Eq. (42) become

c11 � �cos#f cos �f�2	2#f � �sin#f sin �f�2	2�f
c22 � �cos#f sin �f�2	2#f � �sin#f cos �f�2	2�f

c33 � �sin#f�2	2#f
c12 � 1

2
sin�2�f�f�cos#f�2	2#f � �sin#f�2	2�fg

c13 ��1
2
cos �f sin�2#f�	2#f ; c23 ��1

2
sin �f sin�2#f�	2#f

(44)

The expected attitude covariances at the conclusion of the
maneuver can be visualized as an asymmetrical cone centered about
the nominal attitude pointing direction. The cone’s dimensions are
determined by the cross-section of the three-dimensional covariance
ellipsoid with the unit-sphere. A convenient and meaningful
representation of the attitude error covariance 	2att;f is given by the

sum of the diagonal terms of the covariance matrix:

	2att;f � 	2#f � �sin#f�2	2�f (45)

The same result may be established after the diagonalization of the
covariance matrix by means of a coordinate transformation into its
eigenvectors with associated eigenvalues. When substituting the
results of Eqs. (41) into Eqs. (45), we obtain

	2att;f � �1�G2sin2#f�	2#i � �sin#f�2	2�i � 	2�f

� ��2fcos2�� F2sin2#f�	2� (46)

The error variance 	2#i is usually much smaller than the variance of

the other errors (because of the accurate sun sensormeasurements) so
that thefirst term on the right-hand side of Eq. (46)may be dropped in
practice.

V. Special Cases

A. Maneuver Along Sun Cone

When the heading angle �� 0 or 180 deg, the maneuver path
moves along the sun cone with a constant sun aspect angle #i so that
#f equals #i. In general, the maneuver path will be part of a small
circle (i.e., latitude parallel) with the sun as pole. In the special case
when #i � 90 deg, the maneuver moves along a great-circle arc.
When the heading angle � equals 0 or 180 deg, the expression in
Eq. (29b) becomes indeterminate because tan� vanishes. This
singularity originates from the integration performed inEqs. (25) and
(28) because the integrals become meaningless when the sun aspect
angle # stays constant.

To be able to perform error analyses formaneuverswith sin�� 0,
we need to include neighboringmaneuver paths. Therefore, we allow
for heading angles in the neighborhood of 0 or 180 deg with small
(positive or negative) sin�� " and j cos�j � 1 with error of the
order of "2. Equation (29a) takes now the form

#f � #i � �f sin�� #i � "�f (47)

By substituting this expression into Eq. (29b) we can remove the
singularity identified above by applying an asymptotic expansion of
the azimuth angle �f in powers of ". This procedure involves the
expansion of the function y�#f� � y�#i� of Eq. (29b) in terms of a
Taylor series in powers of the small parameter #f � #i ��"�f:
y�#f� � yi � �#f � #i�f@y=@#gi � 1

2
�#f � #i�2f@y=@#2gi � . . .

� yi � "�f= sin#i � 1
2
�"�f�2 cos#i=�sin2#i� �O�"3� (48)

Ameaningful asymptotic result for the azimuth angle �f of Eq. (29b)
can be established in the case when sin �� 0:

�f � �i � ��=���f= sin#i � ��=��1
2
"�2f cos#i=sin

2#i

�for �� 0 or 180 deg� (49)

In the limit for 
! 0 the familiar result for amaneuver along the sun
cone is recovered, namely �f � j�fj sin#i (Wertz [5], Eq. 19–63 on
p. 654) with �f > 0 if �� 0 and �f < 0 if �� 180 deg.

Equations (49) allow the calculation of the error sensitivities for
the cases �� 0=180 deg:

@�f=@#i � ��=���f cos#i=sin2#i (50a)

@�f=@�f � ��=��1= sin#i (50b)

@�f=@�� ��=��1
2
�2f cos#i=sin

2#i (50c)

Similar results for the error sensitivities of the final sun aspect angle
#f can readily be calculated from Eq. (47). The complete list of error
sensitivity results for these special cases are summarized in Table 2.
For a maneuver along the sun cone, the final sun aspect angle will be
insensitive to a thrust-level error (as expected from geometry) but
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will be affected by a rhumb-angle error. The final azimuth angle �f is
of course sensitive to a path-length error.

Finally, the error covariance of the final attitude vector as defined
in Eq. (45) for this special case can be written as in Eq. (46) when the
specific expressions for F and G in Table 2 are substituted. An
interesting special situation occurs when the initial sun angle #i is
near 90 deg when both F and Gmay be considered negligible and a
compact result for the attitude error is found:

	2att;f � 	2#i � 	2�i � 	2�f � �2f	
2
� �for #i � 90 deg� (51)

B. Maneuver Normal to Sun Cone

A heading angle ���90 deg means that the maneuver path is
normal to the sun cone. The attitude moves toward (for �� 90 deg)
or away from (for ���90 deg) the sun position along the great
meridian circle that contains all three vectors zi, zf, and s (Fig. 5). In
these special cases, s � �zi � zf� vanishes and this implies [Eqs. (A8)
and (A9)] that the azimuth angle �f � ��t� � �i � 0 remains constant
throughout the maneuver and the maneuver path length is now
identical to the change in sun aspect angle. In the present case, there is
no difficulty in using the general rhumb-line model of Eqs. (29).
When substituting the specific heading angle values ���90 deg
we obtain

�f � �i � 0;

#f � #i � �f sin��
�
#i � �f; for ���90 deg

#i � �f; for ���90 deg

(52)

Further insight is found by considering the expressions for the
initial and final attitude vectors in the ISF frame in Eqs. (17) and (18)
along the meridian �i � �f � 0:

� i � �sin#i; 0; cos#i�T ; �f � �sin#f; 0; cos#f�T (53)

The arc length between the vectors zi and zf is represented by the
angle  f, which in this special case is equal to the maneuver path
length �f:

�f �  f � cos�1��f � �i� � j#f � #ij (54)

The error sensitivities can readily be calculated from the results in
Table 1 by substituting the specific heading angle values ��
�90 deg and are summarized in Table 3. Finally, the error
covariance of the final attitude vector as defined in Eq. (45) for this
special case can be found fromEq. (46) when substitutingG� 0 and
F� yf � yi:

	2att;f � 	2#i � �sin#f�2	2�i � 	2�f � �yf � yi�2sin2#f	2� (55)

VI. Discussion of Results

We focus on the effects of the rhumb-angle error because an error
in the path length leads to an identical attitude error within the first-
order linear model used here. The effect of an error in the initial
attitude estimate upon the final attitude is relatively insignificant (at
least for longmaneuvers) andwill be taken up in the statistical results
below.

Figures 6–8 show the sensitivities of the final attitude coordinates
to a rhumb-angle error for a number of different rhumb angles in the
range from 0 to 90 deg. These results are based on simulations of an
attitude maneuver of up to 180 deg long and starting with an initial
sun aspect angle of 80 deg. The results for rhumb angles in different
quadrants can be constructed on the basis of the underlying
symmetries with the cases presented. It should be noted that the
maneuvers usually terminate before reaching the terminal value of
�f � 180 deg as is clear from Figs. 6–8. This happens in particular
when the attitude vector has spiraled into the sun vector, that is, when
#f reaches 0. Another reason for terminating the maneuver
simulation would be when the azimuth angle �f reaches 180 deg. In
these cases, there is little use in continuing the simulation because
there exists a shorter maneuver, namely the onewith the rhumb angle
180 deg��.

Figure 6 shows the sensitivity of the sun aspect angle to a rhumb-
angle error. It shows that @#f=@� vanishes for a rhumb angle
�� 90 deg and that the highest sensitivity occurs for a maneuver
along the sun cone (�� 0). In most of the cases shown, the
maneuvers terminate because the azimuth angle �f reaches 180 deg.
Only in the case �� 90 deg does the attitude end up along the sun
vector (and for �� 70 deg it comes close). In none of the cases
shown did �f reach 180 deg. The results in Fig. 6 are in principle
valid for any initial sun aspect angle #i. However, for #i ≠ 80 deg,

Table 1 Error propagations for general rhumb-line maneuver

�#f ��f j�zfj
�#i 1 G� �1= sin#i � 1= sin#f�= tan� f1�G2sin2#fg1=2
��i 0 1 sin#f
��f � sin� cos�= sin#f 1
�� ��f cos� F� �fcos

2�=�sin� sin#f� � �yf � yi�=sin2� f�2fcos2�� F2sin2#fg1=2

Table 2 Error propagations for rhumb-line maneuver with �� 0=180 deg

�#f ��f j�zfj
�#i 1 G� ��=���f cos#i=sin2#i f1� �2f=tan

2#ig1=2
��i 0 1 sin#i
��f 0 ��=��1= sin#i 1
�� �=� �f F� ��=�� 1

2
�2f cos#i=sin

2#i �ff1� 1
4
�2f=tan

2#ig1=2

Table 3 Error propagations for rhumb-line maneuver with j�j � 90 deg

�#f ��f j�zfj
�#i 1 G� 0 1
��i 0 1 sin#f
��f ��=��1 0 1
�� 0 F� yf � yi jyf � yij sin#f
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the maneuvers will terminate at different values of the path lengths
than those shown in Fig. 6.

Figure 7 shows the sensitivity of the azimuth angle �f to a rhumb-
angle error for the same range of rhumbangles and for the same initial
sun angle as in Fig. 6. For high rhumb angles between �� 60 deg
and 90 deg, a singularity occurs due to the fact that #f approaches 0,
which leads toF! 1 as can be seen fromEq. (33b). The sensitivity
of the resulting attitude path to a rhumb-angle error under the same
conditions is given in Fig. 8. The singularity that appeared in the
results for �f disappears now due to the multiplication with sin2#f in
the entry for @j�zfj=@� in Table 1.

Figure 9 shows the sensitivity of the attitude path to a rhumb-angle
error for a relatively high initial sun angle of 140 deg. In comparison
with Fig. 8, the paths are generally longer because the bulge of the
unit sphere near sun angle values of 90 deg needs to be crossed (in
most cases). There are two paths (i.e., �� 30 deg and 40 deg) in
Fig. 9 thatmanage to reach the end point�f � 180 deg before hitting
�f � 180 deg or #f � 0 (the latter occurs only for �� 90 deg).

Table 4 summarizes the results of the sensitivity factor @j�zfj=@�
describing the propagation of a given rhumb-angle error into the
resulting attitude error for a number of rhumb angles and initial sun
angles #i within the range from 30 to 150 deg. Figures 8 and 9
illustrate that maneuvers may terminate before reaching the final end
point �f � 180 deg, namely when �f reaches 180 deg or #f ! 0.
This obviously happens more frequently when the initial sun angle is
small because the path toward �f � 180 deg is relatively short and
the sun is near as well. These are the principal reasons for the more
benign error magnifications in the upper right corner of Table 4.

Table 4 shows that higher values of the initial sun angle in the
lower half of the Table lead in general to higher attitude errors than
corresponding rhumb angles with lower values of #i. This is caused
by the fact that only rhumb angles in the range from 0 to 90 deg are
considered in Table 4 so that the maneuver path typically crosses the
bulge of the unit sphere for initial sun angles #i > 90 deg and these
paths will typically be relatively long. Table 4 is useful for
establishing an estimate of the upper bound for the attitude error
resulting from a particular maneuver with given rhumb angle and
initial sun aspect angle. For instance, it predicts that the
magnification of a rhumb-angle error into an attitude error is at
most about 3.9 for anymeaningful maneuverwith initial sun angle#i
within the range 30 to 150 deg (which is valid for essentially all
spacecraft).

Finally, Table 5 illustrates the practical application of the
statistical propagation model. On the basis of given input errors we
calculate the resulting error statistics of the attitude at the conclusion
of the maneuver. Themaneuver considered in Table 5 has a length of
180 deg with initial and final sun angles #i � 124 deg and #f �
56 deg and rhumb-angle �� 21:8 deg. This type of maneuver was
actually performed for CONTOUR (van der Ha et al. [3]). The inputs
used in Table 5 are the (worst-case or 3-	 level) error variances 	#i
and 	�i for the initial attitude position together with the variances 	�
and 	� for the maneuver path length and the rhumb-angle errors. The
latter two inputs can be calculated from the specified thrust-level
performances and the expected errors in the thrust centroid times.
Offsets in the delay angle (between sun sensor pulse and thrust pulse
initiation) caused for instance by spin rate errors should also be
incorporated in 	�. The outputs are given in terms of the variances of
the sun aspect angle, the azimuth angle and the attitude vector at the
conclusion of the maneuver as predicted by the covariance
propagations in Eqs. (41) and (46).

Fig. 6 Sensitivity of sun angle to rhumb-angle error @#f=@� for

#i � 80 deg.

Fig. 7 Sensitivity of azimuth to rhumb-angle error @�f=@� for

#i � 80 deg.

Fig. 8 Sensitivity of attitude to rhumb-angle error @j�zf j=@� (for

#i � 80 deg).

Fig. 9 Sensitivity of attitude to rhumb-angle error @j�zf j=@� (for

#i � 140 deg).
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The upper part of Table 5 uses inputs that have not been calibrated,
that is, a worst-case thrust-level error of 10% of the path length and a
worst-case rhumb-angle error of 5 deg are taken. The initial sun angle
is produced by a sun sensor and is relatively accurate whereas the
initial azimuth angle is measured by a (noncalibrated) Earth sensor.
The results indicate that the final attitude may be off by more than
23 deg from the desired target attitude. Such a large pointing error is
typically considered unacceptable in view of system design
constraints (e.g., telecommunications). The lower part of Table 5
shows similar results but uses (mildly) calibrated thrust-level and
centroid times. The worst-case path-length error is now assumed to
be 3% and the rhumb-angle error is 1 deg. It follows that the resulting
attitude error is reduced by a factor 3 to 4 and will more likely be
considered acceptable.

VII. Conclusion

The equations describing rhumb-line attitude maneuvers for
spinning satellites have been derived from first principles and have
been interpreted and visualized in geometrical terms. The paper
establishes first-order analytical models for describing the
propagation of errors in the effective thrust-level and in the effective
centroid angle of the thrust pulses into the resulting attitude pointing
error at the conclusion of the maneuver. The models include the
effects of initial attitude estimation errors on the final attitude
pointing. Systematic simulations have been performed and the
results have been summarized in graphical as well as tabular forms.

Appendix: Rhumb-Line Geometry

I. Initial Sun Frame and Inertial Coordinates

The ISFwith axes �Xi; Yi; Zi� is defined in Fig. 5 by the sun vector
s and the initial attitude vector zi. The unit vectors along the
�Xi; Yi; Zi� axes can be expanded in components along the J-2000
inertial axes �X; Y; Z� with the help of the known vectors zi and s:

X i � �zi � cos#is�= sin#i; Yi � �s � zi�=js � zij
Zi � s

(A1)

where #i represents the sun aspect angle associated with the initial
attitude vector zi. After expressing zi and s in their inertial
coordinates �zi1; zi2; zi3�T and �s1; s2; s3�T , respectively, the formal
coordinate transformation between the two reference frames can be
written as

Xi
Yi
Zi

0
@

1
A

� 1

sin#i

zi1 � s1 cos#i zi2 � s2 cos#i zi3 � s3 cos#i
zi3s2 � zi2s3 zi1s3 � zi3s1 zi2s1 � zi1s2
s1 sin#i s2 sin#i s3 sin#i

2
4

3
5 X

Y
Z

0
@

1
A

(A2)

The orthonormal transformation matrix (A2) is written as 	T
 with
entries Tjk�j; k� 1; 2; 3� and the inverse transformation is
	T
�1 � 	T
T . The matrix inversion is meaningful because the initial
sun angle is nonzero in practice. To distinguish between the ISF and
inertial coordinates of the attitude vector z, the ISF components of
the attitude vector is written as �� ��1; �2; �3�T , so that we have from
Eq. (A2):

� � ��1; �2; �3�T � 	T
�z1; z2; z3�T � 	T
z (A3)

II. Attitude in Initial Sun Frame

The expansion of an arbitrary attitude vector in terms of its ISF
components was given in Eq. (17) so that the final attitude vector zf
can be expressed in ISF coordinates as

Table 5 Worst-case error statistics for a 180 deg maneuver before and after calibration

Case Inputs Outputs

# 	#i 	�i 	� 	� 	#f 	�f 	att;f

Before calibration of thrust level and centroid time
1 0.1 deg 0 0 0 0.1 deg 0 0.1 deg
2 0 3 deg 0 0 0 3 deg 2.49 deg
3 0 0 18 deg 0 6.7 deg 20.1 deg 18.0 deg
4 0 0 0 5 deg 14.6 deg 1.7 deg 14.7 deg
5 0 0 18 deg 5 deg 16.0 deg 20.2 deg 23.2 deg
6 0.1 deg 3 deg 18 deg 5 deg 16.0 deg 20.4 deg 23.3 deg

After calibration of thrust level and centroid time
3c 0 0 5.4 deg 0 2.0 deg 6.0 deg 5.4 deg
4c 0 0 0 1 deg 2.9 deg 0.3 deg 2.9 deg
5c 0 0 5.4 deg 1 deg 3.5 deg 6.0 deg 6.1 deg
6c 0.1 deg 3 deg 5.4 deg 1 deg 3.5 deg 6.8 deg 6.6 deg

Table 4 Maximum rhumb-angle error propagation to attitude error (�f ; �f < 180 deg)

�: 0 deg 10 deg 20 deg 30 deg 40 deg 50 deg 60 deg 70 deg 80 deg 90 deg

#i � 30 deg 2.65 1.93 1.40 1.01 0.73 0.51 0.34 0.22 0.20 0.20
40 deg 3.16 2.44 1.82 1.34 0.97 0.68 0.45 0.29 0.27 0.26
50 deg 3.42 2.84 2.20 1.64 1.20 0.85 0.57 0.37 0.34 0.33
60 deg 3.46 3.11 2.52 1.93 1.43 1.01 0.68 0.45 0.42 0.41
70 deg 3.35 3.25 2.77 2.19 1.64 1.18 0.79 0.53 0.50 0.49
80 deg 3.21 3.26 2.95 2.41 1.85 1.34 0.90 0.62 0.58 0.57
90 deg � 3.19 3.04 2.60 2.04 1.49 1.01 0.72 0.68 0.66
100 deg 3.21 3.11 3.05 2.73 2.20 1.64 1.12 0.82 0.78 0.76
110 deg 3.35 3.13 3.00 2.79 2.34 1.78 1.23 0.94 0.89 0.88
120 deg 3.46 3.30 2.95 2.80 2.45 1.91 1.34 1.08 1.03 1.01
130 deg 3.42 3.54 3.12 2.72 2.50 2.02 1.44 1.25 1.19 1.17
140 deg 3.16 3.67 3.47 2.81 2.43 2.10 1.58 1.45 1.38 1.36
150 deg 2.65 3.47 3.86 3.24 2.52 2.11 1.87 1.72 1.64 1.62
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� f � ��f1; �f2; �f3�T � �sin#f cos �f; sin#f sin �f; cos#f�T (A4)

The calculation of the angles #f and �f from the target attitude vector
zf follows from (A3) and (A4):

#f � cos�1��f3� � cos�1�s � zf� (A5a)

�f � tan�1��f2=�f1� � tan�1f	�s � zi� � zf
=	�zi � cos#is� � zf
g
(A5b)

These relationships allow the calculation of the angular coordinates
�#f; �f� in the initial sun frame from the known initial attitude vector
zi and the specified target attitude vector zf. Also the calculation of
the required rhumb angle � from the specified initial and target
attitude vectors with the help of Eq. (26) makes use of the angles
�#f; �f�.

The inverse transformation from a given set �#f; �f� coordinates to
the inertial components of the attitude vector zf makes use of
Eq. (A4) to obtain the components �f � ��f1; �f2; �f3�T in the initial
sun frame. This is then followed by the inverse transformation of
Eq. (A3) to obtain the associated inertial vector zf � �zf1; zf2; zf3�T .

III. Geometrical Relationships

The denominator in Eq. (A5b) can be simplified with the help of
the arc-length angle  f � cos�1�zi � zf� between the initial and
target attitude vectors zi and zf:

�zi � cos#is� � zf � cos f � cos#i cos#f (A6)

Spherical geometry in the triangle formed by the vectors s, zi, and zf
in Fig. 5 provides a relationship between the arc-length angle f and
the azimuth angle �f:

cos f � cos#i cos#f � sin#i sin#f cos �f (A7)

Also the following remarkable set of relationships can be established
by spherical geometry in the same triangle:

�s � zi� � zf � �zf � s� � zi � �zi � zf� � s� sin#i sin#f sin �f

(A8)

Equations (A7) and (A8) provide a confirmation of the result for �f in
Eq. (A5b):

sin �f � f�s � zi� � zfg=�sin#i sin#f�
cos �f � �zi � cos#is� � zf=�sin#i sin#f�

(A9)

These expressions indicate again that the rhumb-linemodel looses its
validity when #i or #f vanishes which occurs when one of the
attitude vectors is aligned with the sun vector.
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